A new paradigm of material identification based on graph theory

The simplified graph and the actual crystal structure (upper right) of spinel Co3O4. Credit: Science China Press

Feng Pan and his colleagues, from Peking Univerisy Shenzhen Graduate School, propose a new paradigm based on graph theory (GT scheme) to improve the efficiency and accuracy of material identification, which focuses on processing the “topological relationship” rather than the value of bond length and bond angle among different structures.

In GT scheme, the researchers first simplify crystal structures into a graph, which only consists of vertices and edges, in which atoms are simplified as vertices and adjacent atoms with the actual chemical bonds are “connected” with edges.

If the topological connections in the simplified graphs between two structures are the isomorphic, the GT scheme will consider them as one structure. By using this method, automatic deduplication for big materials database is achieved for the first time, which identifies 626,772 unique structures from 865,458 original structures.

Moreover, the GT scheme has been modified to solve some advanced problems such as identifying highly distorted structures, distinguishing structures with strong similarity and classifying complex crystal structures in materials big data.

Compared with the traditional structure chemistry methods, the GT scheme can address these iusses much more easily, which enhances the efficiency and reliability of material identification.

By using this artificial intelligent technique, the researchers are trying to achieve high-throughput calculation, preparation and detection for the materials database. The GT scheme subverts the traditional material research methods and accelerates the development in material research field.

###

This work “Identify crystal structures by a new paradigm based on graph theory for building materials big data” has been published in SCIENCE CHINA Chemistry, and the paper is available online at: https://doi.org/10.1007/s11426-019-9502-5

The authors thank Dr. Lin-Wang Wang from Lawrence Berkeley National Laboratory and Dr. Wenfei Fan from the University of Edinburgh for their helpful discussions. This work was supported by the National Key R&D Program of China (2016YFB0700600), the National Natural Science Foundation of China (21603007, 51672012), Soft Science Research Project of Guangdong Province (2017B030301013), and New Energy Materials Genome Preparation & Test Key-Laboratory Project of Shenzhen (ZDSYS201707281026184).

See the article: Mouyi Weng, Zhi Wang, Guoyu Qian, Yaokun Ye, Zhefeng Chen, Xin Chen, Shisheng Zheng, Feng Pan. Identify crystal structures by a new paradigm based on graph theory for building materials big data. Sci. China Chem., 2019, doi: 10.1007/s11426-019-9502-5

Media Contact

Feng Pan EurekAlert!

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

A new puzzle piece for string theory research

Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations….

Climate change can cause stress in herring larvae

The occurrence of multiple stressors undermines the acclimatisation strategies of juvenile herring: If larvae are exposed to several stress factors at the same time, their ability to respond to these…

Making high-yielding rice affordable and sustainable

Plant biologists show how two genes work together to trigger embryo formation in rice. Rice is a staple food crop for more than half the world’s population, but most farmers…