Artificial Spin Ice: A New Playground to Better Understand Magnetism
The Science
Newswise — For the first time, nanomagnet islands or arrays were arranged into an exotic structure (called “shakti”) that does not directly relate to any known natural material. The shakti artificial spin ice configuration was fabricated and reproduced experimentally. The arrays are theoretical predictions of multiple, or degenerate, ground states that are characteristic of complex frustrated magnetic materials.
The Impact
Complex nanomagnet arrays with exotic geometries can be designed and fabricated to exhibit desired physical phenomena and subtle effects. The results open the door to experiments on other artificial spin-ice lattices, predicted to host interesting phenomena. The phenomena are associated with the design of the exotic lattice structures where the topology governs the physics and properties of the material.
Summary
Artificial spin ice is a class of lithographically created arrays of interacting ferromagnetic nanometer-scale islands. Researchers created artificial spin ice as a means to investigate complex magnetism and the related physics in a material that could be tailored to precise specifications and imaged directly. Because of the large magnetic energy scales of these nanoscale islands, a special, newly developed thermal treatment is required to achieve the magnetic ground state. In this research, iron-nickel nanomagnets were fabricated in shakti arrays, a structure with 2, 3, and 4 nanomagnet islands meeting in periodic arrays (resulting in vertexes with 2, 3, and 4 coordination numbers). Then, the structure underwent a thermal treatment by heating it above the Curie temperature (the temperature at which the nanomagnets become magnetic). In this manner, the artificial spin ice achieved unprecedented thermal ground state ordering of the magnetic moments. In these investigations, the shakti spin ice lattices were used to experimentally confirm the ground states of the lattice predicted by Monte Carlo simulations and to study the dynamics and charge screening effects for the system.
Funding
DOE Office of Science, Basic Energy Sciences program. Lithography was performed in part with the support of the National Science Foundation National Nanotechnology Infrastructure Network. Work performed at the University of Minnesota was supported by the European Union Marie Curie International Outgoing Fellowships.
Publications
I. Gilbert, G. W. Chern, S. Zhang, L. O’Brien, B. Fore, C. Nisoli, P. Schiffer, “Emergent ice rule and magnetic charge screening from vertex frustration in artificial spin ice.” Nature Physics 10, 670 (2014). [DOI: 10.1038/nphys3037]
S. Zhang, I. Gilbert, C. Nisoli, G.W. Chern, M.J. Erickson, L. O’Brien, C. Leighton, P.E. Lammert, V.H. Crespi, P. Schiffer, “Crystallites of magnetic charges in artificial spin ice.” Nature 500, 553–557 (2013). [DOI: 10.1038/nature12399]
Contact Information
Kristin Manke
kristin.manke@science.doe.gov
Media Contact
More Information:
http://www.science.doe.govAll latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
A new puzzle piece for string theory research
Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations….
Climate change can cause stress in herring larvae
The occurrence of multiple stressors undermines the acclimatisation strategies of juvenile herring: If larvae are exposed to several stress factors at the same time, their ability to respond to these…
Soil ecosystem more resilient when land managed sustainably
Compared to intensive land use, sustainable land use allows better control of underground herbivores and soil microbes. As a result, the soil ecosystem is more resilient and better protected from…