Graphene and related materials safety: human health and the environment
Researches and companies are currently using a range of materials such as few layered graphene, graphene oxide and heterostructures. The first step to assess the toxicology is to fully characterise these materials.
This work overviews the production and characterisation methods, and considers different materials, which biological effects depend on their inherent properties.
“One of the key messages is that this family of materials has varying properties, thus displaying varying biological effects. It is important to emphasize the need not only for a systematic analysis of well-characterized graphene-based materials, but also the importance of using standardised in vitro or in vivo assays for the safety assessment,” says Bengt Fadeel, lead author of this paper working at Graphene Flagship partner Karolinska Institutet, Sweden.
“This review correlates the physicochemical characteristics of graphene and related materials to the biological effects. A classification based on lateral dimensions, number of layers and carbon-to-oxygen ratio allows us to describe the parameters that can alter graphene's toxicology.
This can orient future development and use of these materials,” explains Alberto Bianco, from Graphene Flagship partner CNRS, France and deputy leader of the Graphene Flagship Work Package on Health and Environment.
The paper gives a comprehensive overview of all aspects of graphene health and environmental impact, focussing on the potential interactions of graphene-based materials with key target organs including immune system, skin, lungs, cardiovascular system, gastrointestinal system, central nervous system, reproductive system, as well as a wide range of other organisms including bacteria, algae, plants, invertebrates, and vertebrates in various ecosystems.
“One cannot draw conclusions from previous work on other carbon-based materials such as carbon nanotubes and extrapolate to graphene. Graphene-based materials are less cytotoxic when compared to carbon nanotubes and graphene oxide is readily degradable by cells of the immune system,” comments Fadeel.
Andrea C. Ferrari, Science and Technology Officer of the Graphene Flagship and Chair of its Management Panel added that “understanding any potential Health and Environmental impacts of graphene and related materials has been at the core of all Graphene Flagship activities since day one.
This review provides a solid guide for the safe use of these materials, a key step towards their widespread utilization as targeted by our innovation and technology roadmap.”
###
The Graphene Flagship was launched by the European Union in 2013 as part of its largest research initiative ever. With a budget of €1 billion it represents a new form of joint, coordinated research initiative. The overall goal of the Graphene Flagship is to take graphene and related materials from the realm of academic laboratories into European society, facilitating economic growth and creating new jobs.
Through a combined academic-industrial consortium consisting of more than 150 partners in over 20 European countries, the research effort covers the entire value chain, from materials production to components and system integration, and targets a number of specific goals that exploit the unique properties of graphene and related materials.
Media Contact
All latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…