Neural networks will help manufacture carbon nanotubes

This is a scheme of the proposed method. Credit: Skoltech

“A major hindrance to unlocking the vast potential of nanotubes is their multiphase manufacturing process which is extremely difficult to manage. We have suggested using artificial neural networks (ANN) to analyze experimental data and predict the efficiency of single-walled carbon nanotubes synthesis,” explains one of the authors of the study and Skoltech researcher, Dmitry Krasnikov.

In their work published in the prestigious Carbon journal, the authors show that machine learning methods, and, in particular, ANN trained on experimental parameters, such as temperature, gas pressure and flow rate, can help monitor the properties of the carbon nanotube films produced.

“The development of human civilization and the advancement of the materials manufacturing and application technologies are closely interlinked in the era of information and technology, with both materials and computational algorithms and their applications shaping our day-to-day life.

This is equally true for ANN that have evolved into an indispensable tool for dealing with multi-parameter tasks, which run the gamut from object recognition to medical diagnosis.

Over the last 25 years, little headway was made in the development of electronics based on carbon nanotubes due to the complex nature of the nanotube growth process. We believe that our method will help create an effective carbon nanotube production framework and open new horizons for their real-life applications,” says Head of Skoltech's Laboratory of Nanomaterials, Professor Albert Nasibulin.

Media Contact

Alina Chernova
alina.chernova@skolkovotech.ru
7-905-565-3633

http://www.skoltech.ru 

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…