New NIST method measures 3D polymer processing precisely
Resins and other materials that react under light to form polymers, or long chains of molecules, are attractive for 3D printing of parts ranging from architectural models to functioning human organs. But it's been a mystery what happens to the materials' mechanical and flow properties during the curing process at the scale of a single voxel. A voxel is a 3D unit of volume, the equivalent of a pixel in a photo.
Now, researchers at the National Institute of Standards and Technology (NIST) have demonstrated a novel light-based atomic force microscopy (AFM) technique–sample-coupled-resonance photorheology (SCRPR)–that measures how and where a material's properties change in real time at the smallest scales during the curing process.
“We have had a ton of interest in the method from industry, just as a result of a few conference talks,” NIST materials research engineer Jason Killgore said. He and his colleagues have now published the technique in the journal Small Methods.
3D printing, or additive manufacturing, is lauded for flexible, efficient production of complex parts but has the disadvantage of introducing microscopic variations in a material's properties. Because software renders the parts as thin layers and then reconstructs them in 3D before printing, the physical material's bulk properties no longer match those of the printed parts. Instead, the performance of fabricated parts depends on printing conditions.
NIST's new method measures how materials evolve with submicrometer spatial resolution and submillisecond time resolution–thousands of times smaller-scale and faster than bulk measurement techniques. Researchers can use SCRPR to measure changes throughout a cure, collecting critical data for optimizing processing of materials ranging from biological gels to stiff resins.
The new method combines AFM with stereolithography, the use of light to pattern photo-reactive materials ranging from hydrogels to reinforced acrylics. A printed voxel may turn out uneven due to variations in light intensity or the diffusion of reactive molecules.
AFM can sense rapid, minute changes in surfaces. In the NIST SCRPR method, the AFM probe is continuously in contact with the sample. The researchers adapted a commercial AFM to use an ultraviolet laser to start the formation of the polymer (“polymerization”) at or near the point where the AFM probe contacts the sample.
The method measures two values at one location in space during a finite timespan. Specifically, it measures the resonance frequency (the frequency of maximum vibration) and quality factor (an indicator of energy dissipation) of the AFM probe, tracking changes in these values throughout the polymerization process. These data can then be analyzed with mathematical models to determine material properties such as stiffness and damping.
The method was demonstrated with two materials. One was a polymer film transformed by light from a rubber into a glass. Researchers found that the curing process and properties depended on exposure power and time and were spatially complex, confirming the need for fast, high-resolution measurements. The second material was a commercial 3D printing resin that changed from liquid into solid form in 12 milliseconds. A rise in resonance frequency seemed to signal polymerization and increased elasticity of the curing resin. Therefore, researchers used the AFM to make topographic images of a single polymerized voxel.
Surprising the researchers, interest in the NIST technique has extended well beyond the initial 3D printing applications. Companies in the coatings, optics and additive manufacturing fields have reached out, and some are pursuing formal collaborations, NIST researchers say.
###
Paper: Monitoring Fast, Voxel Scale Cure Kinetics via Sample Coupled Resonance Photorheology. 2018. C.I. Fiedler-Higgins, L.M. Cox, F.W. DelRio and J.P. Killgore. Small Methods. Published online 4 October 2018. DOI: 10.1002/smtd.201800275
Media Contact
All latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
Climate change can cause stress in herring larvae
The occurrence of multiple stressors undermines the acclimatisation strategies of juvenile herring: If larvae are exposed to several stress factors at the same time, their ability to respond to these…
Soil ecosystem more resilient when land managed sustainably
Compared to intensive land use, sustainable land use allows better control of underground herbivores and soil microbes. As a result, the soil ecosystem is more resilient and better protected from…
Drug resistant fungi spreading: Focus on Candida parapsilosis
The yeast Candida parapsilosis is emerging as a growing threat for hospitalized patients in a new study. A team led by Dr Amelia Barber from the Cluster of Excellence “Balance…