New Research Project for Sustainable Polymer-Bonded Magnets
Rare earth high-performance magnets are indispensable for a wide range of applications: from industrial motors, electronics, e-bikes to wind turbines and electric vehicles.
Polymer-bonded rare earth magnets are becoming increasingly popular because they offer several advantages over conventionally manufactured magnets: they can be produced more efficiently and are compatible with injection molding and 3D printing.
This makes them more flexible in their shape and more resistant to corrosion. However, the rare earths they contain are imported from countries outside Europe. So far, there is no industrial recycling process to recycle these magnets and the valuable materials they contain at their end of life.
In the project “SupplyPBM – Securing the Supply Chain for Rare Earth Polymer-Bonded Magnets by Recycling”, a German-French consortium consisting of five research institutions and industrial partners is now investigating possibilities to generate an industrially feasible recycling process in order to ensure the supply of industry with rare earth-containing polymer-bonded magnets independent of imports. At the same time, the formulation of the magnets is to be made more sustainable.
Under the lead of the Fraunhofer Research Institution for Materials Recycling and Resource Strategies IWKS in Alzenau and Hanau, the partners are working on the development of new value chains. The project is funded by both German and French authorities. In the case of the German partners, the funding is provided by the Federal Ministry of Education and Research.
In the project, scrap magnets are first recycled at Fraunhofer IWKS by means of rapid solidification. For this purpose, the scrap magnets are melted and subsequently quenched on a metal surface. The resulting magnetic material from rapidly solidified flakes can be processed into new polymer-bonded magnets, which in terms of performance are equal to those made from primary material.
For the first time, the researchers are investigating the usage of biopolymers to further increase the sustainability of the materials used. Another advantage is that the process does not require any changes to existing production systems for the polymer-bonded magnets, which enables an upscaling to industrial standards. The process can thus be tested directly at the industrial partners Arelec and Veekim involved in the project.
In order to close the loop completely, a further milestone in the project is the development of an efficient process for recycling the polymer-bound magnets produced from scrap material to return the magnet material into the value chain.
The French project partner ICMCB – Institut de Chimie de la Matière Condensée de Bordeaux is responsible for the development of a continuous technology for the recycling of polymer-bonded magnets based on the use of supercritical fluids for the separation of the polymer from the magnetic particles.
In order to evaluate the profitability and sustainability of the applied processes, a comprehensive life cycle assessment is prepared for the project in addition to a business plan. The project partner ISM – Institut des Sciences Moléculaires on the French side and the Fraunhofer IWKS on the German side will be in charge of evaluating both the environmental impact of the materials and processes used and their efficiency. The aim is to achieve an efficient closed-loop recycling of recyclable materials.
Project partners:
Fraunhofer Research Institution for Materials Recycling and Resource Strategies IWKS
Veekim AG
ARELEC
ICMCB / CNRS – Institut de Chimie de la Matière Condensée de Bordeaux
ISM – Institut des Sciences Moléculaires
Duration:
01.11.2019 – 01.10.2021
Funded by (among others):
Federal Ministry of Education and Research
PD Dr. habil. Benjamin Balke (Project Coordinator)
Fraunhofer Research Institution for Materials Recycling and Resource Strategies IWKS
Phone +49 6023 32039-899
benjamin.balke@iwks.fraunhofer.de
https://www.iwks.fraunhofer.de/en/competencies/MagneticMaterials.html
Media Contact
All latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…