New technique offers strong, flawless 3-D printed ceramics
Ceramic materials offer many appealing qualities, including high-temperature stability, environmental resistance, and high strength. But unlike polymers and some metals, ceramic particles don't fuse together when heated.
Thus, the few 3D printing techniques that have been developed for ceramics have slow production rates and involve additives that increase the material's tendency to crack.
Zak Eckel and colleagues were able to improve upon these processes by using silicon- and oxygen-based polymers that, upon polymerization, trap the UV light so that additives aren't needed for the UV curing steps.
Once the polymer is printed, the part is heated to a high temperature to burn off the oxygen atoms, thus forming a highly dense and strong silicon carbide product.
Using electron microscopy to analyze the end product, the researchers detected no porosity or surface cracks.
Further tests reveal that the ceramic material can withstand temperatures of 1,400⁰ Celsius (2552⁰ Fahrenheit) before experiencing cracking and shrinkage.
The authors note that these developments, which also create a more efficient ceramic-production process, hold important implications for numerous high-temperature applications, such as in hypersonic vehicles and jet engines.
Media Contact
All latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
New organoid with all key pancreas cells
Researchers from the Organoid group (previously Clevers group) at the Hubrecht Institute have developed a new organoid that mimics the human fetal pancreas, offering a clearer view of its early development….
Unlocking the potential of nickel
New study reveals how to use single atoms to turn CO2 into valuable chemical resources. Nickel and nitrogen co-doped carbon (Ni-N-C) catalysts have shown exceptional performance in converting CO2 into…
‘Spooky action’ at a very short distance
Scientists map out quantum entanglement in protons. Particles streaming from collisions offer insight into dynamic interactions and collective behavior of quarks and gluons. Scientists at the U.S. Department of Energy’s…