Researchers synthesize magnetic nanoparticles that could offer alternative to rare Earth magnets

“The discovery opens the pathway to systematically improving the new material to outperform the current permanent magnets,” said Shiv Khanna, Ph.D., a commonwealth professor in the Department of Physics in the College of Humanities and Sciences.

The new material consists of nanoparticles containing iron, cobalt and carbon atoms with a magnetic domain size of roughly 5 nanometers. It can store information up to 790 kelvins with thermal and time-stable, long-range magnetic order, which could have a potential impact for data storage application.

When collected in powders, the material exhibits magnetic properties that rival those of permanent magnets that generally contain rare earth elements. The need to generate powerful magnets without rare earth elements is a strategic national problem as nearly 70 to 80 percent of the current rare earth materials are produced in China.

The team's findings will appear in the article “Experimental evidence for the formation of CoFe2C phase with colossal magnetocrystalline-anisotropy,” in a forthcoming issue of Applied Physics Letters.

Permanent magnets, specifically those containing rare earth metals, are an important component used by the electronics, communications and automobile industries, as well as in radars and other applications.

Additionally, the emergence of green technology markets – such as hybrid and electric vehicles, direct drive wind turbine power systems and energy storage systems – have created an increased demand for permanent magnets.

However, China is the main supplier of world rare earth demands and has tried to impose restrictions on their export, creating an international problem.

The current paper is a joint experimental theoretical effort in which the new material was synthesized, characterized and showed improved characteristics following the theoretical prediction.

“This is good science along with addressing a problem with national importance,” said Ahmed El-Gendy, a former postdoctoral associate in the Department of Chemistry in the College of Humanities and Sciences and a co-author of the paper.

Everett Carpenter, Ph.D., a professor in the Department of Chemistry and director of the VCU's Nanoscience and Nanotechnology Program, said the new material is “already showing promise, even for applications beyond permanent magnets.”

###

The research was supported by ARPA-e REACT project 1574-1674 and the U. S. Department of Energy (DOE) through grant DE-SC0006420.

Media Contact

Brian McNeill
bwmcneill@vcu.edu
804-827-0889

 @vcunews

http://www.vcu.edu 

Media Contact

Brian McNeill EurekAlert!

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…