The iron stepping stones to better wearable tech without semiconductors
Yap says the iron-studded BNNTs are pushing the boundaries of electronics hardware. The transistors modulating electron flow need an upgrade.
“Look beyond semiconductors,” he says, explaining that materials like silicon semiconductors tend to overheat, can only get so small and leak electric current.
The key to revamping the fundamental base of transistors is creating a series of stepping-stones that use quantum tunneling.
The nanotubes are the mainframe of this new material. BNNTs are great insulators and terrible at conducting electricity. While at first that seems like an odd choice for electronics, the insulating effect of BNNTs is crucial to prevent current leakage and overheating. Additionally, electron flow will only occur across the metal dots on the BNNTs.
In past research, Yap and his team used gold for quantum dots, placed along a BNNT in a tidy line. With enough energy potential, the electrons are repelled by the insulating BNNT and hopscotch from gold dot to gold dot. This electron movement is called quantum tunneling.
“Imagine this as a river, and there's no bridge; it's too big to hop over,” Yap says. “Now, picture having stepping stones across the river–you can cross over, but only when you have enough energy to do so.”
Unlike with semiconductors, there is no classical resistance with quantum tunneling. No resistance means no heat. Plus, these materials are very small; the nanomaterials enable the transistors to shrink as well. An added bonus is that BNNTs are also quite flexible, a boon for wearable electronics.
###
The project is supported by the U.S. Department of Energy, the Office of Basic Energy Sciences (Grant DESC0012762). The STM-TEM holder is awarded by the U.S. National Science Foundation, Major Research Instrumentation Program (Award DMR 0820884).
Media Contact
All latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
New organoid with all key pancreas cells
Researchers from the Organoid group (previously Clevers group) at the Hubrecht Institute have developed a new organoid that mimics the human fetal pancreas, offering a clearer view of its early development….
Tasty, Airy Baked Goods with Culinary Foam made from Peas
Culinary foam made from the whites of chicken eggs makes baked goods light and airy. In the LeguFoam project, Fraunhofer researchers are working on a plant-based alternative made from legumes….
Biohydrogen from Wood Waste
Up to now, wood waste has had to be disposed of at great expense and, at best, has been used to generate energy in incineration plants. Fraunhofer researchers are now…