Variation in antibiotic bacteria in tropical forest soils may play a role in diversity

This is a dry tropical forest where soil samples were collected. Credit: Dr. Jennifer Powers

A study published October 28 in the journal Biotropica represents a step toward a better understanding of the role antibiotic-bacteria play in the ecology of tropical forests.

University of Minnesota researchers, led by Kristen Becklund, found that antibiotic production by soil bacteria was widespread, but that the abundance and activity of the microbes varied across the landscape depending, in part, on nutrient availability.

“Our results suggest substantial differences in the capacities of microbial communities to suppress soil-borne diseases in tropical forests,” says Becklund. “The fact that we are seeing all this variation is exciting because it means that these bacteria may be influencing diversity in tropical forests.”

Differences in the capacities of microbial communities to suppress soil-borne diseases in tropical forests could impact the composition of the forest itself. Antibiotics in soil are believed to act as weapons that allow microbes to kill their competitors, including pathogens.

This antibiotic inhibition can lead to declines in populations of plant pathogens and can even result in the development of disease-suppressive soils. Because different plants are susceptible to different pathogens and diseases, variation in the abundance, effectiveness and specificity of microbially-produced antibiotics has the potential to influence not only plant disease and productivity, but also the composition of tree species in the forest.

“This study is an initial first step to open the black box of microbial community function in tropical forest soils,” says Powers.

Future studies will focus on the causes of the variation in density and activity and the potential consequences for tropical forest communities.

Becklund is a graduate student in the College of Biological Sciences' Ecology, Evolution and Behavior program. Co-authors include Linda Kinkel, a professor in the Department of Plant Pathology in the College of Food, Agricultural and Natural Resource Sciences, and Jennifer Powers, a professor in the Departments of Ecology, Evolution and Behavior and Plant Biology in the College of Biological Sciences.

Media Contact

Stephanie Xenos Eurek Alert!

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

A new puzzle piece for string theory research

Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations….

Climate change can cause stress in herring larvae

The occurrence of multiple stressors undermines the acclimatisation strategies of juvenile herring: If larvae are exposed to several stress factors at the same time, their ability to respond to these…

Making high-yielding rice affordable and sustainable

Plant biologists show how two genes work together to trigger embryo formation in rice. Rice is a staple food crop for more than half the world’s population, but most farmers…