Antarctic Peninsula ice more stable than thought

This is a view from the British Antarctic Survey (BAS) Rothera research station, on Alexander Island at the Antarctic Peninsula. Credit: A. E. Hogg/CPOM

An international team of researchers, led by the UK Centre for Polar Observation and Modelling at the University of Leeds, are the first to map the change in ice speed. The team collated measurements recorded by five different satellites to track changes in the speed of more than 30 glaciers since 1992.

The findings, published today in Geophysical Research Letters, represent the first detailed assessment of changing glacier flow in Western Palmer Land — the southwestern corner of the Antarctic Peninsula.

The new Leeds led research calls into question a recent study from the University of Bristol that reported 45 cubic kilometres per year increase in ice loss from the sector. The Leeds research found the increase to be three times smaller.

Lead author Dr Anna Hogg, from the Leeds' School of Earth and Environment, said: “Dramatic changes have been reported in this part of Antarctica, so we took a closer look at how its glaciers have evolved using 25 years of satellite measurements dating back to the early 1990s.”

The researchers found that between 1992 and 2016, the flow of most of the region's glaciers increased by between 20 and 30 centimetres per day, equating to an average 13% speedup across the glaciers of Western Palmer Land as a whole.

These measurements provide the first direct evidence that Western Palmer Land is losing ice due to increased glacier flow — a process known as dynamical imbalance.

The team also combined their satellite observations with an ice flow model using data assimilation to fill in gaps where the satellites were unable to produce measurements. This allowed the complete pattern of ice flow to be mapped, revealing that the regions glaciers are now pouring an additional 15 cubic kilometres of ice into the oceans each year compared to the 1990s.

The earlier study reported that the region was losing three times this amount of ice, based on measurements of glacier thinning and mass loss determined from other satellite measurements. The Leeds study casts doubt on that interpretation, because the degree of glacier speedup is far too small.

Study co-author Professor Andrew Shepherd, from Leeds' School of Earth and Environment, explained: “Although Western Palmer Land holds a lot of ice — enough to raise global sea levels by 20 centimetres — its glaciers can't be responsible for a major contribution to sea level rise, because their speed has barely changed over the past 25 years. It's possible that it has snowed less in this part of Antarctica in recent years — that would also cause the glaciers to thin and lose mass, but it's a not a signal of dynamical imbalance.”

The greatest speedup in flow was observed at glaciers that were grounded at depths more than 300 m below the ocean surface.

Dr Hogg said: “We looked at water temperatures in front of the glaciers which have sped up the most, and we found that they flow through deep bedrock channels into the warmest layer of the ocean. This circumpolar deep water, which is relatively warm and salty compared to other parts of the Southern Ocean, has warmed and shoaled in recent decades, and can melt ice at the base of glaciers which reduces friction and allows them to flow more freely.

With much of Western Palmer Land's ice mass lying well below sea level it is important to monitor how remote areas such as this, are responding to climate change. Satellites are the perfect tool to do this.

Pierre Potin, ESA's Manager of the Copernicus Sentinel-1 Mission which was used in the study, said: “We will continue to use Sentinel-1's all weather, day-night imaging capability to extend the long term climate data record from European satellites.”

###

Further information:

Images available for download: goo.gl/Dwg1Ed

Image1 caption: Ice speed in Western Palmer Land on the Antarctic Peninsula measured by the ESA-EU Sentinel-1 satellite mission.
Credit: J. Wuite, ENVEO.

Image 2 caption: View of Western Palmer Land glaciers and George VI Ice Shelf from BAS Twin Otter aeroplane.
Credit: Hogg/CPOM.

Additional images

Caption: View from the British Antarctic Survey (BAS) Rothera research station, on Alexander Island at the Antarctic Peninsula.
Credit: A. E. Hogg/CPOM

Video available for download: goo.gl/5CDNrB

(Animation of the ice speed evolving through the study period)

Caption: Ice flow in Western Palmer Land from 1992 to 2016, from an optimised ice sheet model.
Credit: S. Cornford, CPOM/Univ. Swansea.

Dr Anna Hogg is available for interview.

For interviews and additional information please contact University of Leeds Media Relations Officer Anna Martinez on a.martinez@leeds.ac.uk or +44 (0)113 343 4196 Out of hours number +44 (0)7712389448

Paper reference:

Hogg, A. E., et al. (2017), Increased ice flow in Western Palmer Land linked to ocean melting, Geophys. Res. Lett., 44, (DOI:10.1002/2016GL072110)

University of Bristol study – Wouters at al., [2015] – can be found at: http://science.sciencemag.org/content/348/6237/899

University of Leeds

The University of Leeds is one of the largest higher education institutions in the UK, with more than 31,000 students from 147 different countries, and a member of the Russell Group research-intensive universities.

We are a top 10 university for research and impact power in the UK, according to the 2014 Research Excellence Framework, and positioned as one of the top 100 best universities in the world in the 2015 QS World University Rankings. We are The Times and The Sunday Times University of the Year 2017. http://www.leeds.ac.uk

Centre for Polar Observation and Modelling (CPOM) provides, on behalf of NERC, UK National Capability in observing and modelling the cryosphere. We combine satellite measurements with theoretical and numerical models to explain how Earth's ice, oceans and atmosphere interact, and to predict their behaviour over long periods and large scales.

The CPOM Directorate is based at the University of Leeds, and we have researchers at the Universities of Bristol and Reading and at University College London. CPOM is funded by the Natural Environment Research Council (NERC). We also work closely with the British Antarctic Survey (BAS), National Oceanography Centre (NOC), National Centre for Earth Observation (NCEO) and European Space Agency (ESA). http://www.cpom.org.uk

Media Contact

Anna Martinez
pressoffice@leeds.ac.uk
44-011-334-34196

 @universityleeds

http://www.leeds.ac.uk 

Media Contact

Anna Martinez EurekAlert!

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

A new puzzle piece for string theory research

Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations….

Climate change can cause stress in herring larvae

The occurrence of multiple stressors undermines the acclimatisation strategies of juvenile herring: If larvae are exposed to several stress factors at the same time, their ability to respond to these…

Making high-yielding rice affordable and sustainable

Plant biologists show how two genes work together to trigger embryo formation in rice. Rice is a staple food crop for more than half the world’s population, but most farmers…