Extreme weather events in Chesapeake Bay give clues for future climate impacts
The intensity, duration, and frequency of extreme temperature- and precipitation-based events are key components to understanding the climate of Chesapeake Bay.
Kari Pohl of the Center for Environmental Science at the University of Maryland and colleagues studied these components by calculating 26 extreme climate indices defined by the Expert Team on Climate Change Detection and Indices. She will report their findings at the Annual Meeting of the Geological Society of America on 1 November in Baltimore, Maryland, USA.
“A traditional view of historic climate change is to determine mean annual changes,” Pohl explained. “However, organisms do not feel means; they feel the day-to-day variability and extreme events, such as the frequency of warmer-than-normal days.”
The goals of the project include reconstructing extreme climate changes from the recent past (1894-2014), using historically referenced data to assess near-future global climate model projections, and to ultimately use this analysis to investigate ecological problems in Chesapeake Bay, such as eelgrass diebacks.
The study saw changes that included an overall decrease in cold events, a higher probability to have a year without a cold spell, and an increase in the annual number of wet days.
These extreme climate indices were strongly correlated to the shallow water environment, including streamflow and water temperature. These linkages will allow insights on how extreme changes could affect environmental boundaries and critical threshold events of vulnerable organisms.
Pohl hopes that studies such as this one “will enhance our general understanding of historical and future extreme climate variability, allowing policy-makers to make better-informed decisions for coastal communities.”
###
CONTACT:
Kari Pohl, Center for Environmental Science, University of Maryland
kstlaurent@umces.edu
WHAT:
Session No. 54: Restoring the Nation's Largest Estuary: Lessons Learned from Efforts to Address Changes in Water Quality and Ecosystem Structure and Function within the Context of Landscape Change and Climate Variability in the Chesapeake Bay and Its Watershed
Session hyperlink: https:/
Paper No. 10: Chesapeake Bay Climate Extremes and Variability: a Recent Past, Present, and Near Future Analysis
Abstract hyperlink: https:/
WHEN & WHERE:
Sunday, 1 November 2015: 1:30-5:30 PM
Room 308 (Baltimore Convention Center)
Presentation Time: 3:55 PM
The Geological Society of America, founded in 1888, serves more than 27,000 members from academia, government, and industry in more than 100 countries. Through its meetings, publications, and programs, GSA enhances the professional growth of its members and promotes the geosciences in the service of humankind. GSA encourages cooperative research among earth, life, planetary, and social scientists, fosters public dialogue on geoscience issues, and supports all levels of earth science education.
Media Contact
All latest news from the category: Earth Sciences
Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.
Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…