NASA spies Extra-Tropical Storm Kate racing through North Atlantic
A NOAA GOES-West satellite visible image extra-tropical storm Kate on Nov. 12 at 1445 UTC (9:45 a.m. EST) showed the storm over 400 miles southeast of Newfoundland, Canada. Most of the clouds associated with the post-tropical storm were north and east of the center. Forecaster Beven of the National Hurricane Center said, “Satellite imagery indicates that Kate has merged with a baroclinic zone over the north Atlantic and is now an extratropical cyclone.”
Kate Reached Hurricane Strength
On Nov. 10, the RapidScat instrument that flies aboard the International Space Station saw Hurricane Kate north of the Bahamas and its strongest winds were north of the center. Maximum sustained winds in both areas were as strong as 30 meters per second (67 mph/108 kph). On Nov. 11, those winds increased to hurricane force. Hurricane force winds extended outward up to 35 miles (55 km) from the center and tropical storm force winds extend outward up to 205 miles (335 km).
At 10 a.m. EST (1500 UTC) on Nov. 11 the center of Hurricane Kate was located near latitude 36.8 North, longitude 60.5 West. That put Kate's center about 395 miles (635 km) northeast of Bermuda and about 780 miles (1,260 km) south-southwest of Cape Race Newfoundland.
An Infrared Look at Kate
On Nov. 12 at 05:17 UTC (12:17 a.m. EST) infrared imagery from the Atmospheric Infrared Sounder or AIRS instrument aboard NASA's Aqua satellite showed fragmented strong storms east and north of Kate's center where cold cloud top temperatures were near -63F/-53C. Storms with cloud tops that cold (and high in the troposphere) have been shown to generate heavy rain.
Aqua satellite showed fragmented strong storms east and north of Kate's center.
Kate Weakens and Becomes Extra-Tropical
At 4 a.m. EST on Nov. 12, Kate was classified as an extra-tropical storm. That means that a tropical cyclone has lost its “tropical” characteristics. The National Hurricane Center defines “extra-tropical” as a transition that implies both poleward displacement (meaning it moves toward the north or south pole) of the cyclone and the conversion of the cyclone's primary energy source from the release of latent heat of condensation to baroclinic (the temperature contrast between warm and cold air masses) processes. It is important to note that cyclones can become extratropical and still retain winds of hurricane or tropical storm force.
At 4 a.m. EST on Nov. 12, Kate's maximum sustained winds were near 60 knots (70 mph). Kate was centered near 40.7 degrees north latitude and 50.8 degrees west longitude, about 430 miles south-southeast of Cape Race, Newfoundland, Canada. Kate was moving to the east-northeast at 23 knots (26 mph). Minimum central pressure was 983 millibars. The post-tropical cyclone is expected to accelerate toward the east-northeast and northeast.
Kate's Fate
The National Hurricane Center expects extra-tropical storm Kate to continue weakening, but slowly over the next couple of days. The NHC forecast keeps maximum sustained winds near 45 knots (50 mph) through Nov. 15 and by Nov. 16, Kate is expected to become absorbed by an extra-tropical low pressure area.
Additional information on this system can be found in High Seas Forecasts issued by the National Weather Service at http://www.
Media Contact
All latest news from the category: Earth Sciences
Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.
Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…