See how Arctic sea ice is losing its bulwark against warming summers

Arctic sea ice has not only been shrinking in surface area in recent years, it's becoming younger and thinner as well. In this animation, where the ice cover almost looks gelatinous as it pulses through the seasons, cryospheric scientist Dr. Walt Meier of NASA Goddard Space Flight Center describes how the sea ice has undergone fundamental changes during the era of satellite measurements. This video is public domain and along with other supporting visualizations can be downloaded from the Scientific Visualization Studio at: http://svs.gsfc.nasa.gov/4509 Credit: NASA's Goddard Space flight Center/Jefferson Beck

“What we've seen over the years is that the older ice is disappearing,” said Walt Meier, a sea ice researcher at NASA's Goddard Space Flight Center in Greenbelt, Maryland. “This older, thicker ice is like the bulwark of sea ice: a warm summer will melt all the young, thin ice away but it can't completely get rid of the older ice. But this older ice is becoming weaker because there's less of it and the remaining old ice is more broken up and thinner, so that bulwark is not as good as it used to be.”

Direct measurements of sea ice thickness are sporadic and incomplete across the Arctic, so scientists have developed estimates of sea ice age and tracked their evolution from 1984 to the present. Now, a new NASA visualization of the age of Arctic sea ice shows how sea ice has been growing and shrinking, spinning, melting in place and drifting out of the Arctic for the past three decades.

“Ice age is a good analog for ice thickness because basically, as ice gets older it gets thicker,” Meier said. “This is due to the ice generally growing more in the winter than it melts in the summer.”

In the early 2000s, scientists at the University of Colorado developed a way to monitor Arctic sea ice movement and the evolution of its age by using data from a variety of sources, but primarily satellite passive microwave instruments. These instruments gauge brightness temperature: a measure of the microwave energy emitted by sea ice that is influenced by the ice's temperature, salinity, surface texture and the layer of snow on top of the sea ice.

Each floe of sea ice has a characteristic brightness temperature, so the researchers developed an approach that would identify and track ice floes in successive passive microwave images as they moved across the Arctic. The system also uses information from drifting buoys as well as weather data.

“It's like bookkeeping; we're keeping track of sea ice as it moves around, up until it melts in place or leaves the Arctic,” said Meier, who is a collaborator of the group at the University of Colorado and the National Snow and Ice Data Center in Boulder, Colorado, the center that currently maintains the Arctic sea ice age data.

Ice in motion

Every year, sea ice forms in the winter and melts in the summer. The sea ice that survives the melt season thickens with each passing year: newly formed ice grows to about 3 to 7 feet of thickness during its first year, while multi-year ice (sea ice that has survived several melt seasons) is about 10 to 13 feet thick. The older and thicker ice is more resistant to melt and less likely to get pushed around by winds or broken up by waves or storms.

The motion of sea ice is not limited to its seasonal expansion and shrinkage: Except for coastal regions where sea ice is attached to the shore, the sea ice cap is in almost constant movement. The primary driver of sea ice movement in the Arctic is wind and there are two major features in the Arctic circulation: the Beaufort Gyre, a clockwise ice circulation that makes ice spin like a wheel in the Beaufort Sea, north of Alaska, and the Transpolar Drift Stream, which transports ice from Siberia's coast toward the Fram Strait east of Greenland, where the ice exits the Arctic basin and melts in the warmer waters of the Atlantic Ocean.

“On a week-to-week basis, there are weather systems that come through, so the ice isn't moving at a constant rate: sometimes the Beaufort Gyre reverses or breaks down for a couple weeks or so, the Transpolar Drift Stream shifts in its direction … but the overall pattern is this one,” Meier said. “Then the spring melt starts and the ice shrinks back, disappearing from the peripheral seas.”

The new animation shows two main bursts of thick ice loss: the first one, starting in 1989 and lasting a few years, was due to a switch in the Arctic Oscillation, an atmospheric circulation pattern, which shrunk the Beaufort Gyre and enhanced the Transpolar Drift Stream, flushing more sea ice than usual out of the Arctic. The second peak in ice loss started in the mid-2000s.

“Unlike in the 1980s, it's not so much as ice being flushed out -though that's still going on too,” Meier said. “What's happening now more is that the old ice is melting within the Arctic Ocean during the summertime. One of the reasons is that the multiyear ice used to be a pretty consolidated ice pack and now we're seeing relatively smaller chunks of old ice interspersed with younger ice. These isolated floes of thicker ice are much easier to melt.”

“We've lost most of the older ice: In the 1980s, multiyear ice made up 20 percent of the sea ice cover. Now it's only about 3 percent,” Meier said. “The older ice was like the insurance policy of the Arctic sea ice pack: as we lose it, the likelihood for a largely ice-free summer in the Arctic increases.”

Media Contact

Patrick Lynch
patrick.lynch@nasa.gov
301-286-2102

 @NASAGoddard

http://www.nasa.gov/goddard 

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

A new puzzle piece for string theory research

Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations….

Climate change can cause stress in herring larvae

The occurrence of multiple stressors undermines the acclimatisation strategies of juvenile herring: If larvae are exposed to several stress factors at the same time, their ability to respond to these…

Soil ecosystem more resilient when land managed sustainably

Compared to intensive land use, sustainable land use allows better control of underground herbivores and soil microbes. As a result, the soil ecosystem is more resilient and better protected from…