The Antarctica Factor: model uncertainties reveal upcoming sea-level risk

“The ‘Antarctica Factor’ turns out to be the greatest risk, and also the greatest uncertainty, for sea-levels around the globe,” says lead-author Anders Levermann from the Potsdam Institute of Climate Impact Research (PIK) and Columbia University’s LDEO in New York.

“While we saw about 19 centimeter of sea-level rise in the past 100 years, Antarctic ice-loss could lead to up to 58 centimeter within this century. Coastal planning cannot merely rely on the best guess. It requires a risk analysis. Our study provides exactly that: The sea-level contribution of Antarctica is very likely not going to be more than 58 centimeters.”

Thermal expansion of the ocean water under global warming and melting of mountain glaciers, which to date have been the most important factors for sea-level rise, will come on top of the contribution from Antarctic ice-loss.

The overall sea-level rise risk is thus even bigger, yet the ‘Antarctica Factor’ is about to become the most important one, according to the study now published in the journal Earth System Dynamics of the European Geosciences Union (EGU).

Large range of estimates makes the results very robust

The range of sea-level rise estimates from the ‘Antarctica Factor’ provided by the scientists is rather large. Assuming that humanity keeps on emitting greenhouse gases as before, the range the scientists call “very likely” to capture the future is between 6 and 58 centimeters for this century.

If greenhouse gas emissions were to be reduced rapidly, it is between 4 and 37 centimeters. Importantly, the difference between a scenario of business-as-usual and a scenario of emissions reductions becomes substantially greater on longer time-scales, hence farther in the future.

The researchers accounted for a number of uncertainties in the computations, from the atmospheric warming response to carbon emissions to oceanic heat transport to the Southern ocean.

16 ice sheet modeling groups comprised of 36 researchers from 27 institutes contributed to the new study, which was coordinated by PIK. A similar study six years earlier had to rely on the output of only five ice sheet models. This development reflects the increasing importance of research on the Antarctic ice sheet.

“Risks for coastal metropolises from New York to Mumbai, Hamburg to Shanghai”

“The more computer simulation models we use, all of them with slightly different dynamic representations of the Antarctic ice sheet, the wider the range of results that we yield – but also the more robust the insights that we gain,” says co-author Sophie Nowicki of the NASA Goddard Space Flight Center and lead author of the Intergovernmental Panel on Climate Change who led the overarching ice sheet model intercomparison project, ISMIP6.

“There are still large uncertainties, but we are constantly improving our understanding of the largest ice sheet on Earth. Comparing model outputs is a forceful tool to provide society with the necessary information for rational decisions.”

Over the long-term, the Antarctic ice sheet has the potential to raise sea-level by tens of meters. “What we know for certain,” says Levermann, “is that not stopping to burn coal, oil and gas will drive up the risks for coastal metropolises from New York to Mumbai, Hamburg or Shanghai.”

Article: Levermann, A., Winkelmann, R., Albrecht, T., Goelzer, H., Golledge, N. R., Greve, R., Huybrechts, P., Jordan, J., Leguy, G., Martin, D., Morlighem, M., Pattyn, F., Pollard, D., Quiquet, A., Rodehacke, C., Seroussi, H., Sutter, J., Zhang, T., Van Breedam, J., Calov, R., DeConto, R., Dumas, C., Garbe, J., Gudmundsson, G. H., Hoffman, M. J., Humbert, A., Kleiner, T., Lipscomb, W. H., Meinshausen, M., Ng, E., Nowicki, S. M. J., Perego, M., Price, S. F., Saito, F., Schlegel, N.-J., Sun, S., and van de Wal, R. S. W. (2020): Projecting Antarctica's contribution to future sea-level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2), Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020.

Weblink to the article once it is published:
https://www.earth-syst-dynam.net/11/35/2020/

PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

www.pik-potsdam.de

https://doi.org/10.5194/esd-11-35-2020

https://www.earth-syst-dynam.net/11/35/2020/

Media Contact

Jonas Viering Potsdam-Institut für Klimafolgenforschung

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

NASA: Mystery of life’s handedness deepens

The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…

What are the effects of historic lithium mining on water quality?

Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…