Turbulence creates ice in clouds

The results from Leipzig could help to map an important part of the water cycle better in the weather and climate models in the future by ice formation in clouds.

The formation of ice in clouds is a core element of the water cycle on Earth. It is usually difficult to isolate the ice formation process in order to study it individually because the interaction of aerosol particles, air motion and microphysical processes in clouds is too complex. Nevertheless, it is necessary to understand these processes in detail in order to better map this mechanism in weather and climate models.

The cloud researchers concentrated on a less spectacular and therefore less considered form of clouds in order to exclude other processes than primary ice formation. They investigated large cloud fields at an altitude of about 2 to 8 kilometres with a vertical extent of only 100 to 200 metres and contained extremely little ice in the range of micrograms per cubic meter.

Such thin cloudsallow both ice to be detected with a cloud radar and the vertical air movement with a Doppler lidar, as the laser beam can still penetrate the clouds. Both lidar and radar instruments were therefore necessary to investigate the turbulence and ice formation in these clouds above Leipzig from the ground.

“The effect only became visible when we observed the ice directly below the clouds’ top layer. Our findings enable for the first time quantitative and well constraint insights into the relationship between turbulence and ice formation in the atmosphere. The stronger a cloud is 'shaken' by vertical air motions, the more ice falls out of it,” reports Dr Johannes Bühl of TROPOS.

This correlation was measured for clouds colder than -12 °C. Next, the remote sensing scientists want to explore the influence of aerosols by taking a closer look at the beginning (ice nucleation) and end (precipitation of ice particles) of the ice formation process.

Ice formation in clouds is an important process in the atmosphere, because without this ice practically no precipitation would fall from clouds in the middle latitudes of the Earth. As far-reaching as these processes may be, many details have not yet been sufficiently understood and are therefore not taken into account in the weather and climate models. Tilo Arnhold

Links:
The Leipzig Aerosol and Cloud Remote Observations System LACROS
https://www.tropos.de/en/research/projects-infrastructures-technology/coordinate…
Current data from LACROS:
http://lacros.rsd.tropos.de/
CLOUDNET:
https://www.tropos.de/en/research/projects-infrastructures-technology/coordinate…

Contacts:

Dr Johannes Bühl, Dr Patric Seifert, Dr Ronny Engelmann
Scientific staff, Department „Remote Sensing of Atmospheric Processes“ at the Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
Phone +49-341-2717-7312, -7080, -7315
https://www.tropos.de/en/institute/about-us/employees/johannes-buehl
https://www.tropos.de/en/institute/about-us/employees/patric-seifert
https://www.tropos.de/en/institute/about-us/employees/ronny-engelmann
and
Dr Albert Ansmann
Leader of the Working Group Ground Based Remote Sensing, Department „Remote Sensing of Atmospheric Processes“ at the Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
Phone: +49-341-2717-7064
https://www.tropos.de/en/institute/about-us/employees/albert-ansmann

or
Tilo Arnhold
Public Relations at the Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
Phone: +49-341-2717-7189
https://www.tropos.de/en/current-issues/press-releases

Bühl, Johannes; Seifert, Patric; Engelmann, Ronny and Ansmann, Albert (2019): Impact of vertical air motions on ice formation rate in mixed-phase cloud layers. npj Climate and Atmospheric Science volume 2, Article number: 36 (2019). DOI: 10.1038/s41612-019-0092-6.
https://doi.org/10.1038/s41612-019-0092-6
The study was funded by the European Union under the Seventh Framework Programme (ACTRIS / 262254 and BACCHUS / 603445) and the German Research Foundation (DFG; UNDINE / 162311106).

https://www.tropos.de/en/current-issues/press-releases/details/turbulenz-sorgt-f…

Media Contact

Tilo Arnhold Leibniz-Institut für Troposphärenforschung e. V.

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

A new puzzle piece for string theory research

Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations….

Climate change can cause stress in herring larvae

The occurrence of multiple stressors undermines the acclimatisation strategies of juvenile herring: If larvae are exposed to several stress factors at the same time, their ability to respond to these…

Making high-yielding rice affordable and sustainable

Plant biologists show how two genes work together to trigger embryo formation in rice. Rice is a staple food crop for more than half the world’s population, but most farmers…