A step closer to fusion energy
Harnessing nuclear fusion, which powers the sun and stars, to help meet earth's energy needs, is a step closer after researchers showed that using two types of imaging can help them assess the safety and reliability of parts used in a fusion energy device.
Scientists from Swansea University, Culham Centre for Fusion Energy, ITER in France, and the Max-Planck Institute of Plasma Physics in Germany paired x-ray and neutron imaging to test the robustness of parts.
They found that both methods yield valuable data which can be used in developing components.
The sun is a shining example of fusion in action. In the extremes of pressure and temperature at the centre of the sun atoms travel fast enough to fuse together, releasing vast amounts of energy. For decades, scientists have been looking at how to harness this safe, carbon-free and virtually limitless source of energy.
One major obstacle is the staggering temperatures that components in fusion devices have to withstand: up to 10 times the heat of the centre of the sun.
One of the main approaches to fusion, magnetic confinement, requires reactors which have some of the greatest temperature gradients on earth, and potentially in the universe: plasmas reaching highs of 150 million °C and the cryopump, which is only metres away, as low as -269 °C.
It is critical that researchers can test – non-destructively – the robustness of engineering components that must function in such an extreme environment.
The research team focused on one critical component, called a monoblock, which is a pipe carrying coolant. This was the first time the new tungsten monoblock design has been imaged by computerised tomography. They used ISIS Neutron and Muon Source's neutron imaging instrument, IMAT.
Dr Triestino Minniti of the Science and Technology Facilities Council said:
“Each technique had its own benefits and drawbacks. The advantage of neutron imaging over x-ray imaging is that neutrons are significantly more penetrating through tungsten.
Thus, it is feasible to image samples containing larger volumes of tungsten. Neutron tomography also allows us to investigate the full monoblock non-destructively, removing the need to produce “region of interest” samples”
Dr Llion Evans of Swansea University College of Engineering said:
“This work is a proof of concept that both these tomography methods can produce valuable data. In future these complementary techniques can be used either for the research and development cycle of fusion component design or in quality assurance of manufacturing”.
The next step is to convert the 3D images produced by this powerful technique into engineering simulations with micro-scale resolution. This technique, known as image-based finite element method (IBFEM), enables the performance of each part to be assessed individually and account for minor deviations from design caused by manufacturing processes.
###
The research was published in Fusion Engineering and Design.
Notes to editors:
Read the research paper: https:/
Swansea University is a world-class, research-led, dual campus university. The University was established in 1920 and was the first campus university in the UK. It currently offers around 350 undergraduate courses and 350 postgraduate courses to circa 20,000 undergraduate and postgraduate students.
The University's 46-acre Singleton Park Campus is located in beautiful parkland with views across Swansea Bay. The University's 65-acre science and innovation Bay Campus, which opened in September 2015, is located a few miles away on the eastern approach to the city. It has the distinction of having direct access to a beach and its own seafront promenade. Both campuses are close to the Gower Peninsula, the UK's first Area of Outstanding Natural Beauty.
Swansea was named 'Welsh University of the Year' in The Times and The Sunday Times Good University Guide 2017. The University is in the top 300 best universities in the world, ranked in the 251-300 group in The Times Higher Education World University rankings 2018.
The results of the Research Excellence Framework (REF) 2014 showed the University has achieved its ambition to be a top 30 research University, soaring up the league table to 26th in the UK, with the 'biggest leap among research-intensive institutions' (Times Higher Education, December 2014) in the UK.
The University has ambitious expansion plans as it moves towards its centenary in 2020, as it continues to extend its global reach and realising its domestic and international ambitions.
Swansea University is a registered charity. No.1138342. Visit http://www.
Media contacts:
Kevin Sullivan, Swansea University Public Relations Office 01792 513 245 k.g.sullivan@swansea.ac.uk
Media Contact
All latest news from the category: Power and Electrical Engineering
This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.
innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…