Binghamton engineer creates origami battery
Seokheun “Sean” Choi developed an inexpensive, bacteria-powered battery made from paper, he writes in the July edition of the journal Nano Energy.
The battery generates power from microbial respiration, delivering enough energy to run a paper-based biosensor with nothing more than a drop of bacteria-containing liquid. “Dirty water has a lot of organic matter,” Choi says. “Any type of organic material can be the source of bacteria for the bacterial metabolism.”
The method should be especially useful to anyone working in remote areas with limited resources. Indeed, because paper is inexpensive and readily available, many experts working on disease control and prevention have seized upon it as a key material in creating diagnostic tools for the developing world.
“Paper is cheap and it's biodegradable,” Choi says. “And we don't need external pumps or syringes because paper can suck up a solution using capillary force.”
While paper-based biosensors have shown promise in this area, the existing technology must be paired with hand-held devices for analysis. Choi says he envisions a self-powered system in which a paper-based battery would create enough energy — we're talking microwatts — to run the biosensor. Creating such a system is the goal of a new three-year grant of nearly $300,000 he received from the National Science Foundation.
Choi's battery, which folds into a square the size of a matchbook, uses an inexpensive air-breathing cathode created with nickel sprayed onto one side of ordinary office paper. The anode is screen printed with carbon paints, creating a hydrophilic zone with wax boundaries.
Total cost of this potentially game-changing device? Five cents.
Choi, who joined Binghamton's faculty less than three years ago as an assistant professor of electrical and computer engineering, earned a doctorate from Arizona State University after doing undergraduate work and a master's degree in South Korea. Choi, who holds two U.S. patents, initially collaborated on the paper battery with Hankeun Lee, a former Binghamton undergraduate and co-author of the new journal article.
Choi recalls an actual “lightbulb moment” while working on an earlier iteration of the paper-based batteries, before he tried the origami approach. “I connected four of the devices in series, and I lit up this small LED,” he says. “At that moment, I knew I had done it!”
###
For a direct link to the journal article: http://www.
Media Contact
All latest news from the category: Power and Electrical Engineering
This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.
innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…