Inventing the Sustainable Batteries of the Future

Holistic approach – European R&D roadmap Battery 2030+ Battery 2030+

The transformation to a climate-neutral society requires fundamental changes in the way we generate and use energy. Batteries are a key enabler to reach this goal, if they can be made sustainable, safe and affordable with ultra-high performance at the same time.

The Fraunhofer R&D Center for Electromobility at the Fraunhofer Institute for Silicate Research ISC in Wuerzburg has been involved in drawing up the European research and development roadmap for the BATTERY 2030+ initiative and coordinates the Fraunhofer-Gesellschaft's contributions to this EU research initiative.

“We have been researching and developing new battery materials and technologies for over 25 years. We are currently contributing our material and manufacturing know-how to over a dozen national and European collaborative projects relating to battery development. For example, we are working on components for solid-state batteries and on modern, selective and efficient recycling processes,” says Dr. Henning Lorrmann, head of the Fraunhofer ISC's R&D center.

The initiative’s research roadmap has been developed through a European-wide consultation process and identifies three main research directions, based on a chemistry neutral approach, that will accelerate the development of the next generation of batteries.

“BATTERY 2030+ is not about developing a specific battery chemistry, but rather about exploiting the power of digital technologies like artificial intelligence for transforming the discovery and development process of our future smart and connected batteries. With BATTERY 2030+, battery design and development are entering the digital age”, says Kristina Edström, Director of BATTERY 2030+ and Professor of Inorganic Chemistry at Uppsala University.

Developing breakthrough technologies will require immense multi-disciplinary and cross-sectorial research efforts and approaches. Europe has the potential to take the lead thanks to thriving research and innovation communities.

“To invent the batteries of the future in Europe, we must join forces and find a coordinated, collaborative approach that unites industry, researchers, policy makers and the public behind a common vision that was laid out in the Battery Manifesto published a year ago [1]”, says Simon Perraud, Deputy Director of BATTERY 2030+ and Deputy Director at CEA-Liten.

This is to be achieved through sustainably degraded materials, greater material resource efficiency and smarter functions, more environmentally friendly scalable manufacturing processes for affordable battery solutions, and more efficient recycling and remanufacturing processes.

The three major research themes identified in the roadmap are the accelerated discovery of interfaces and materials, the integration of smart functionalities and the manufacturability and recyclability as cross-cutting areas.

Accelerated discovery of interfaces and materials

BATTERY 2030+ will build a Materials Acceleration Platform (MAP) that will redefine how we do battery materials research today. This will be achieved by combining powerful approaches, from high-throughput synthesis and characterization as well as materials computation, automated data analysis, data mining, and artificial intelligence.

Building on the Materials Acceleration Platform, BATTERY 2030+ will develop a Batteries Interface Genome (BIG) that will lay a new basis to our understanding of the processes that govern the functioning of every battery. Understanding and tailoring the mechanisms that determine whether batteries will be safe and have a long lifetime is key to inventing the battery of the future.

Integration of smart functionalities

Even the best battery will fail eventually. External factors, such as extreme temperatures, mechanical stress, excessive power during operation or simply ageing over time, will act detrimentally on battery performance. Therefore, we must find new ways to prevent batteries from failing.

Sensing: In the battery of the future, we will follow chemical and electrochemical reactions directly inside a battery cell. New sensor concepts that can discover early stages of battery failure and unwanted side reactions leading to early battery ageing will emerge.

Self-healing: Clever ways of healing damage inside a battery that otherwise would lead to battery failure can make batteries safer, more reliable and more sustainable. This will become an important property of batteries of the future.

Cross-cutting areas

Manufacturability and recyclability of batteries are thus key cross-cutting areas that will develop in parallel with Theme I and II. The new knowledge and ideas on how to manufacture and recycle the batteries will from the start feed into the materials discovery and development process.

This ensures that all research approaches lead to new batteries that can actually be produced and recycled, not only cost-effective but also as climate-neutral as possible.

About BATTERY 2030+:
BATTERY 2030+ is the large-scale pan-European research initiative that will enable Europe to take the lead in battery science and technology by developing sustainable batteries with ultrahigh performance and smart functionalities.
The initiative is part of the European Battery Alliance launched by Maroš Šefčovič, Vice President at the European Commission, in 2017. It brings together the most important stakeholders in the field of battery research and engineering to work on concrete actions that support the implementation of the European Action plan on Batteries, hence contributing to the EU’s Green Deal, The UN sustainability goals, as well as to the SET-plan.

The BATTERY 2030+ initiative was launched in March 2019 and is currently supported by a Horizon 2020 Coordination and Support Action (CSA). It is based on a multi-disciplinary and cross-sectorial approach with support both from the industry and academia. The core group consists of 17 partners, leaders in their fields, from nine European countries. The initiative is coordinated by Kristina Edström, Professor of Inorganic Chemistry, Uppsala University. The participation of the Fraunhofer-Gesellschaft, the leading institution for application-oriented research in Europe, is coordinated by Dr. Henning Lorrmann, Fraunhofer ISC, Wuerzburg.

Kristina Edström, Coordinator of BATTERY 2030+ and Professor of Inorganic Chemistry at Uppsala University.
Phone: +46 70 167 90 06
E-mail: kristina.edstrom@kemi.uu.se

Simon Perraud, Deputy Coordinator of BATTERY 2030+ and Deputy Director at CEA-Liten.
Phone: +33 4 38 78 26 08
E-mail: simon.perraud@cea.fr

Henning Lorrmann, Head of Fraunhofer R&D Center Electromobility,
Fraunhofer Institute for Silicate Research ISC
Phone: +49 931 4100-519
E-mail: henning.lorrmann@isc.fraunhofer.de

https://battery2030.eu/research/roadmap/ – Download the BATTERY 2030+ roadmap “Inventing the Sustainable Batteries of the Future”.
https://battery2030.eu/about-us/manifesto/ – [1] The manifesto
https://www.fzeb.fraunhofer.de – Website of the Fraunhofer R&D Center Electromobility

Media Contact

Dipl.-Geophys. Marie-Luise Righi Fraunhofer-Institut für Silicatforschung ISC

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Climate change can cause stress in herring larvae

The occurrence of multiple stressors undermines the acclimatisation strategies of juvenile herring: If larvae are exposed to several stress factors at the same time, their ability to respond to these…

Soil ecosystem more resilient when land managed sustainably

Compared to intensive land use, sustainable land use allows better control of underground herbivores and soil microbes. As a result, the soil ecosystem is more resilient and better protected from…

Drug resistant fungi spreading: Focus on Candida parapsilosis

The yeast Candida parapsilosis is emerging as a growing threat for hospitalized patients in a new study. A team led by Dr Amelia Barber from the Cluster of Excellence “Balance…