Meet the most nimble-fingered robot ever built
Berkeley professor Ken Goldberg, postdoctoral researcher Jeff Mahler and the Laboratory for Automation Science and Engineering (AUTOLAB) created the robot, called DexNet 2.0.
DexNet 2.0's high grasping success rate means that this technology could soon be applied in industry, with the potential to revolutionize manufacturing and the supply chain.
DexNet 2.0 gained its highly accurate dexterity through a process called deep learning. The researchers built a vast database of three-dimensional shapes — 6.7 million data points in total — that a neural network uses to learn grasps that will pick up and move objects with irregular shapes.
The neural network was then connected to a 3D sensor and a robotic arm. When an object is placed in front of DexNet 2.0, it quickly studies the shape and selects a grasp that will successfully pick up and move the object 99 percent of the time.
DexNet 2.0 is also three times faster than its previous version.
DexNet 2.0 was featured as the cover story of the latest issues of MIT Technology Review, which called DexNet 2.0 “the most nimble-fingered robot yet.”
The complete paper will be published in July.
Media Contact
All latest news from the category: Power and Electrical Engineering
This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.
innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.
Newest articles
Decoding Cancer: 40 Years of Breakthroughs in Genetic Research
Cancer in children and adolescents is rare. Nevertheless, malignant diseases are still one of the most common causes of death in this age group. Survivors of childhood or adolescent cancer…
Let’s Think Before the First Drink: How Early Substance Use Might Lead to Brain Structure Differences Among Adolescents
Many differences appeared to exist prior to any substance use, pointing to the role brain structure may play in substance use risk, NIH-supported study suggests. Studies reveal factors that expose…
Combating Kidney Cancer Using Enhanced Immunotherapies
Medical University of South Carolina Hollings Cancer Center researcher receives Department of Defense Early Career Scholar Award to improve immune therapies by targeting resistant kidney tumors. A Medical University of…