ETH Zurich competence center ESC introduces energy strategy
In the past year, various reports from the United Nations' Intergovernmental Panel on Climate Change (IPCC) have warned the world in no uncertain terms that in order to achieve a stable climate on our planet by the end of this century, any increase in CO2 emissions in the coming decades must be curbed before the emissions can be appreciably reduced. According to the IPCC, the maximum amount of CO2 emissions that can be tolerated globally by the end of the 21st century amounts to roughly 2000 gigatons. This will mean a considerable reduction in the emission of CO2 per capita.
The per capita emission of carbon dioxide in Switzerland is currently 9 tons per year, approximately twice the global average. “Our objective for the climate and energy policy for the century has to be to induce each member of the human race to produce not more than 1 ton of carbon dioxide per year”, Professor Ralph Eichler, President ETH Zurich, explained to the media today.
Systematic implementation of 3E strategy
This proposed emission target for carbon dioxide may seem ambitious by today's standards, but it can be achieved by the end of the century both in Switzerland and throughout the world. This is reflected in the calculations made by ETH Zurich's own Energy Science Center (ESC). In order to reach the target, an energy strategy will have to be consistently implemented. As stated by Profes-sor Konstantinos Boulouchos, the proposed strategy is based on three pillars: 1) the exhaustion of efficiency potential, 2) the extended use of renewable energy sources and 3) the increased share of electricity in the energy mix.
Exhausting the efficiency potential will mean increasing efficiency in every link of the energy conversion chain, from extraction at the energy source, through stor-age and distribution up to energy usage. This alone would harbour great sav-ings potential, especially when combined with market-based instruments to in-fluence the demand side.
The second E of the strategy focuses on the use of renewable energy sources, such as photovoltaics, water, and wind. Important to note is that economic as well as ecological aspects must be taken into consideration when using renew-able energy sources.
Electricity as the backbone of the energy system
The newcomer to the 3-E strategy constitutes the third E: electrification. Accord-ing to ETH Zurich researchers, in future C02 poor electricity will establish itself as the backbone of a sustainable energy system. It is increasingly being used in heating and cooling buildings (with heat pumps, for example), and is expected to extend to individual mobility (moving, in the long run, from hybrid vehicles to fully electric cars).
A reorientation of the energy system, however, will not happen overnight. It is likely to take several decades. All the more reason that it is crucial that steps be taken today: infrastructure in industrialized countries (transmission network, power plants) needs to be renewed and in threshold countries, erected.
Innovative research at ETH Zurich
ETH Zurich conducts intensive research with a mind to finding new solutions and methods to face the CO2 problem. Professor Marco Mazzotti from the Insti-tute for Process Engineering is researching the possibilities of eliminating CO2 in fossil-fueled power stations and combining it with stable and solid substances. This so-called mineralization thus facilitates the permanent and secure storage of greenhouse gases. Power electronics are becoming increasingly smaller and more efficient: the research group headed by Professor Johann Kolar from the Power Electronic Systems Laboratory is devoted to developing such compo-nents that are deployed, for example, in hybrid vehicles. Efficient control of the drive system of such cars makes a significant contribution towards environmen-tally-friendly private transport.
Promising ETH Zurich research is also being carried out in the field of building systems engineering. The technology at our fingertips today would already en-able us to replace CO2-emitting heating and boiler systems with a combination of innovative wall insulation and heat pumps – with free renewable energy from the ground. This ingenious concept is also just the ticket for existing buildings. “We just need to get cracking”, explains Professor HansJürg Leibundgut from the Institute for Building Systems. Within five to six years it should be possible to produce the necessary components on an industrial level so that for the price of a mid-range car, a four-room apartment can be refurbished, with the effect that practically all of the CO2 previously generated by heating and warm water can be prevented.
Media Contact
All latest news from the category: Ecology, The Environment and Conservation
This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.
innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…