Atomic force microscope powerful new tool for measurement of particle attraction
Aim is better filters for contaminants
Tracy L. Cail, a Ph.D. student in geological sciences at Virginia Tech, is developing a new method for calculating sticking efficiency at the nanoscale with the aim of someday developing improved filters for removing contaminants from solutions, such as bacteria from groundwater. She will present her research at the 225th American Chemical Society national meeting March 23-27 in New Orleans.
In the past, scientists have used theoretical equations or bulk-scale column experiments to determine how to remove contamination. “Neither approach explains what happens at the smallest scale,” says Cail. And the results of column experiments, in which water composition is studied before and after it passes through a soil-packed column, can not be extrapolated for different environmental conditions such as pH fluctuations and changes in concentration, she explains.
Cail is using an atomic force microscope (AFM) to measure the attraction between a silica glass collector surface and a 2-micron sphere of carboxylated polystyrene, which has the size, shape, and surface charge similar to bacteria. The micro spheres are attached to a cantilever developed for just such AFM studies. “The AFM measures the forces of attraction and repulsion between the particle and the collector as the surfaces are moved toward each other and then apart.We mathematically determine the energy of interaction, which allows us to quantify how much they want to stick,” says Cail.
With this experimental design, various environmental conditions can be simulated and their effect on sticking efficiencies can readily be determined.
The collector material of silica glass is similar to the quartz sand present in many soils. Cail plans to introduce actual bacteria in future experiments, but the focus of her presentation at ACS is the new method of measurement. “Sticking efficiency has not been measured experimentally before using the AFM.
The paper, “Experimentally derived sticking efficiency of micro spheres using atomic force microscopy: Toward a better understanding of particle transport in porous media (ENVR 38),” will be presented at 4 p.m. on Sunday, March 23, in room 389 of the Morial Convention Center, New Orleans.
Cail, who is from Moncton, New Brunswick, Canada, did her undergraduate work at St Francis Xavier University and her masters degree work at the University of Nevada, Las Vegas.
Reach Tracy Cail at her lab at 540-231-3358 or tcail@vt.edu.
PR CONTACT: Susan Trulove 540-231-5646 strulove@vt.edu
Media Contact
More Information:
http://www.technews.vt.edu/All latest news from the category: Ecology, The Environment and Conservation
This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.
innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…