New transregional special research field at the universities of Stuttgart and Constance

For this purpose findings from eye-tracking studies, among others, are being incorporated into new methods and applications. (Photo: University of Stuttgart, VISUS).

In its meeting on 21st May 2015 the German Research Foundation (DFG) approved the establishment of a new transregional special research field (SFB/Transregio) at the universities of Stuttgart and Constance.

The new SFB/Transregio 161 “Quantitative Methods for Visual Computing“ deals with the computer-based processing and representation of image information with the objective of making the quality and applicability of data and images measureable and determinable. The joint project is being supported by the universities of Stuttgart and Constance; the spokesperson is Professor Daniel Weiskopf from the Visualisation Institute at the University of Stuttgart.

The Max-Planck-Institute for Biological Cybernetics in Tübingen is also involved in the planned activities. The DFG is initially funding the research for four years with around eight million Euros. Moreover, the University of Stuttgart is also jointly involved in the new Transregio wave phenomena: analysis and numerics (contact university Karlsruhe Institute of Technology, KIT).

“The acquisition of the new special research field underlines the special orientation of Computer Science at the University of Stuttgart, that unites a broad spectrum of competences in terms of everything to do with recording, processing, analysing and representing visual information under one roof“, explained the Rector of the University of Stuttgart, Professor Wolfram Ressel. “The Visualisation Institute in particular is unique throughout Germany as a central university research facility and illustrates our excellent expertise.“

The SFB/Transregio 161 deals with visual computing, i.e. the computer-based processing and representation of image information. This conceals numerous applications from research and industry as well as the private environment, for instance the visualisation of measurement data or simulations, virtual maps and round trips or computer-based film scenes.

“Computer scientists from various faculties are developing new techniques together with engineers and psychologists in order to simplify the representation and handling of constantly increasing data quantities and to further enhance the quality of computer-based images“, said Professor Daniel Weiskopf, spokesperson for the new research association. “Up to now, however, the quantifiability of visual computing methods has frequently been neglected. We want to rise to this challenge.“

The objective of the around 40 scientists from the new research association is to make the quality and accuracy of existing and new visual computing methods measureable and determinable and to coordinate the requirements of various applications and users.

“We will conduct studies and measurements, check visualisations and investigate interaction possibilities“, explained Professor Oliver Deussen from the University of Constance. “On this basis existing techniques and algorithms should be optimised and further developed.“

The research team will concentrate, for example, on the effect of virtual environments and city models on humans, the recording and representation of three-dimensional data of real scenes or from simulations and on new technologies such as brain-computer-interfaces.

Does the representation contain all the important information? How strenuous is it for a person to comprehend this? Which added value do new interaction possibilities offer? These and similar questions should be answered by the upcoming research activities in order to create a comprehensive quantitative basis and to drive forward progress in this field.

The special research fields funded by the DFG are research facilities from a university established for a period of up to twelve years. An SFB/Transregio thereby covers several research locations. At the University of Stuttgart a total of six special research fields have been operating up to now, three of these in cooperation with external association partners. The University of Constance has had two special research fields up to now. The SFB/Transregio 161 “Quantitative Methods for Visual Computing“ will take up its research work on 1st July.

Furthermore, the University of Stuttgart is jointly involved in the new Transregio wave phenomena: analysis and numerics (concact university Karlsruhe Institute of Technology, KIT). The objective of this special research field lies in analytically understanding the propogation of waves in realistic conditions, to simulate them numerically and ultimately to also control them.

The underlying methodical approach exists in the interdependence of mathematical analysis and numerics. In this way the research program concentrates on characteristic wave phenomena, like the occurrence of stationary and wandering waves or wave fronts, oscillations and resonances, wave guidance as well as reflection, breaking and control of waves. Besides the basic research on waves, the application-related perspective is geared towards optics and photonics, biomedical technology and applied geophysics.

Contact
Prof. Daniel Weiskopf, University of Stuttgart, Visualisation Institute at the University of Stuttgart, Tel. 0711/685-88602, Email: daniel.weiskopf (at) visus.uni-stuttgart.de
Prof. Oliver Deussen, University of Constance, Faculty of Computer Science and Information Sciences, Tel. 07531/88-2778, Email: oliver.deussen (at) uni-konstanz.de
Andrea Mayer-Grenu, University of Stuttgart, Abt. University Communication, Tel. 0711/685-82176,
Email: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Media Contact

Andrea Mayer-Grenu Universität Stuttgart

More Information:

http://www.uni-stuttgart.de/

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…