Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles
Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year. This will require new technical solutions for charging infrastructure: charging should take place as quickly as possible and, as far as possible, without the driver’s involvement.
Researchers at TU Graz’s Institute of Automotive Engineering have now developed an automated, conductive – in other words, cable-based – robotic system that for the first time allows for charging of different vehicles entering the charging space one after the other.
The comfort charging system is designed for use with standard charging plugs (CCS), meaning that no specific vehicle adaptations are necessary. The project partners were BMW AG, headquartered in Munich; MAGNA Steyr Engineering Graz; Linz-based automation specialists KEBA and the Austrian Society of Automotive Engineers (ÖVK) in Vienna.
Bernhard Walzel, who oversees this research focus at TU Graz as part of his dissertation, explains the revolutionary methodology: “For the first time we have found a way to automatically recharge several vehicles, one after another, using a robotic charging station, without the need to adapt the vehicles. The robot recognises the charging socket by means of sophisticated camera technology and can charge several e-cars in sequence after they drive into the charging station. Problems associated with the vehicle’s parking positioning on the station were solved, so the system still works even when a vehicle is not parked in an exact position.”
As Walzel points out, another unique feature is that the robot can operate in various light conditions indoors as well as outdoors.
Automated conductive charging of e-vehicles
A major challenge facing the researchers was programming and integrating sensor technology to identify the exact position and type of vehicle and charging socket. Working in close collaboration with the Institute of Computer Graphics and Vision at TU Graz, the robotic charging system was fitted with several cameras. These recognise the position and type of the charging socket and inform the robot where to plug in the charging cable.
The aim was to design the sensors and charging robot in such a way that it was suited to use with various vehicle types and parking positions, without the need for any changes to the vehicle itself. This means the system can operate with all standard charging plugs. In order to solve the problem, the researchers devised a complex mechatronic system consisting of sensors, robot kinematics and robot control elements.
The technology developed in Graz is designed for automated high-capacity charging of e-vehicles, supplying them with sufficient power to cover long distances; charging lasts only a few minutes. Such high-capacity charging requires innovative liquid-cooled plugs and cables, which can be easily connected to the vehicle using the robot-controlled rapid charging system. The technology also provides a solution that could be implemented for fully automated parking and charging of e-vehicles in future.
The charging system design and experiments on sensor technologies were carried out as part of contract research commissioned by the Austrian Society of Automotive Engineers (ÖVK). The prototyping and testing of the charging system formed part of a project entitled “KoMoT – Komfortable Mobilität mittels Technologieintegration” (“convenient mobility by means of technology integration”). Funding was provided by the Austrian Research Promotion Agency (FFG) and the Austrian Federal Ministry of Transport, Innovation and Technology (bmvit).
This research area is anchored in the Field of Expertise “Mobility & Production”, one of five strategic research FoE of TU Graz.
Bernhard WALZEL, Dipl.-Ing.
Helmut BRUNNER, Dipl.-Ing.
Mario HIRZ, Associate Prof. Dr.
TU Graz | Institute of Automotive Engineering
Inffeldgasse 11/II, 8010 Graz
Tel.: +43 316 873 35278
Mobil: +43 660 4840492
bernhard.walzel@tugraz.at
Media Contact
All latest news from the category: Information Technology
Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.
This area covers topics such as IT services, IT architectures, IT management and telecommunications.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…