University Jaume I researchers at work on EU project to improve video game realism

A group of researchers from the Department of Computer Languages and Systems at the Universitat Jaume I is taking part in a project to improve realism in video games. The goal is to design software that makes the task of game programmers easier so that they can create more credible environments without having to carry out complex operations. The research, which has received financial help of 1,649,000 euros from the European Commission and is to last for 33 months, involves 11 other members from Spanish and European universities, and from companies from this sector.

So far, game design has not presented any special difficulties for companies because the techniques used have been somewhat rudimentary. Nowadays, however, the need to improve video game realism requires more complex applications. The UJI and the other universities involved will work on turning the complex formulas already existing in the laboratory into usable programmes that will improve the degree of realism in three basic aspects: geometry, lighting and visibility.

”Our idea is to develop the technology that was used in very complex workstations so that it is immediately accessible on PCs or on low cost platforms”, explains Miguel Chover, responsible for the project at the UJI. “Our objective is to create software so that video game programmers can simplify their tasks and work with more complex models and more realistic lighting techniques without having to develop their own algorithms. That is, what we do is a sort of algorithms bookstore”, added Chover.

The University of Girona, together with the University of Budapest, will be in charge of improving video game lighting; the University of Vienna will work on visibility; and the Universitat Jaume I de Castellón, the Polytechnic University of Valencia and the University of Limoges will improve the realism of the geometry of the objects on screen and their movements.

”We work with multiresolution models, which are a tool that allows the programmer to change the level of detail automatically. In this way, a designer designs a character, the programmer captures it and puts it into our algorithm data structure. It then automatically changes its level of detail without the programmer having to generate the algorithms. This is all done while at the same time the transition of geometry is made smooth so that everything is more realistic and jumps do not occur when a character goes from a more distant to a nearer plane”, explained Chover. The applications concerning lighting and visibility will have the same effects.

Companies from the videogame and the virtual reality sectors, and the Research Association from the Toy Industry are also taking part in the project. The role of the companies is to expose their needs and test to see whether the solutions provided by researchers are well adapted to the applications in the world of industry.

In Spain, 47% of the population between 13 and 34 years old are habitual video game users, a percentage which can be seen in the income level of the industry. Last year this sector had a turnover of 800 million euros with a 12% growth, whereas the cinema box-office takings was 636 million, an increase of only 2%.

Media Contact

Hugo Cerdà alfa

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Scientists transform blood into regenerative materials

… paving the way for personalized, blood-based, 3D-printed implants. Scientists have created a new ‘biocooperative’ material based on blood, which has shown to successfully repair bones, paving the way for…

A new experimental infection model in flies

…offers a fast and cost-effective way to test drugs. Researchers at the Germans Trias i Pujol Research Institute and Hospital have reinforced their leading role in infectious disease research by…

Material developed with novel stretching properties

KIT researchers produce metamaterial with different extension and compression properties than conventional materials. With this material, the working group headed by Professor Martin Wegener at KIT’s Institute of Applied Physics…