Effective treatment for rare blood disorder
The life-threatening blood disorder thrombotic thrombocytopenic purpura (TTP) is rare (2-3 people out of every million per year) and affects mainly young, otherwise healthy people – women more frequently than men. TTP will lead to death if not treated within a few days.
In healthy individuals, the protein scissor ADAMTS13 cleaves ultra large von Willebrand factor (VWF) multimers. Smaller VWF multimers are less sticky, do not bind platelets spontaneously and thus formation of blood clots in blood vessels is prevented.
In TTP, ADAMTS13 is lacking due to circulating autoantibodies. In the absence of VWF size regulation, platelets are consumed in VWF-platelet clots, that occlude the microcirculation. Blood circulation to end organs is decreased, resulting in heart attack, stroke and kidney failure. Hence TTP is also been refered to as “clumping plague”.
So far, standard treatment of acute episodes of TTP consists of a daily plasma exchange (to remove autoantibodies and replenish ADAMTS13) in combination with immunsuppressive drugs (to inhibit autoantibody formation).
Nevertheless, 10 – 20 percent of patients die during an acute episode. In addition, more than half of the survivors have permanent organ damage and dysfunction, particularly in the form of neurological deficits, and frequently experience relapses.
Rapid control of the disorder with lower rate of relapses
A major international study, with the participation of the Department of Hematology of Bern University Hospital, was published on January 9, 2019, in the New England Journal of Medicine (NEJM). The study was able to confirm the effectiveness of an innovative TTP treatment. The studied anti-VWF nanobody, caplacizumab, was shown to effectively prevent VWF-platelet clumping and thus protect the end organs from further depriviation of blood circulation.
145 TTP patients partcipated in this randomized Phase III study, 72 received the nanobody during the plasma exchange treatment and for 30 days thereafter, 73 received a placebo for the same period of time. In 75 percent of patients who received the study drug, the acute phase of TTP ended after 2.95 days, compared to 4.5 days with the conventional treatment.
Furthermore, the patients required fewer plasma exchange sessions (median 5 vs. 7), and could be discharged earlier. The side-effects were comparable in both study arms, although mild bleeding symptoms occurred more frequently with the new compound (65% compared to 48% with placebo). The study was able to confirm the promising data of the Phase II study, in which the Bern-based Hematology Department had also participated.
Long-term research topic at the Bern University Hospital and Bern University
The Department of Hematology at the Bern University Hospital and Bern University (Hematology Research Group, Department of BioMedical Research) have been researching TTP and ADAMTS13 since the mid-1990s. This resarch was initiated by Prof. em. Dr. phil nat. Miha Furlan and Prof. em. Dr. med. Bernhard Lämmle with the discovery of the von Willebrand factor-cleaving protease (now ADAMTS13), and the observation of its deficiency in TTP, and is currently headed by Prof. Dr. med. Johanna Kremer Hovinga. Since 2010 she has been involved in developing the new treatment approach for TTP, which will be available to all TTP patients in the future.
Prof. Dr. med. Johanna A. Kremer Hovinga Strebel, Senior Consulting Physician, Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Johanna.Kremer@insel.ch
DOI: 10.1056/NEJMoa1806311
Media Contact
More Information:
http://www.insel.chAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…