First it was cows – now it’s larvae!
Chaoborus spp spends one to two years of its life cycle under water in a larval state, in lakes no deeper than 70 metres. Larvae spend the day in lakebed sediment and rise to the surface at night time to feed. They are equipped with air sacs that they can adjust to alter their depth in the water so as to migrate upwards and downwards.
Chaoborus spp can adjust its position in the water by inflating these air pockets to rise to the surface or, conversely, compress them to descend again. However, at a depth of 70 metres, it is impossible for the larva to inflate its vesicles due to the water pressure that is exerted on them.
So, what does it do? This is the question that the team examined, led by Professor Daniel McGinnis, from the F.-A. Forel Department in the Science Faculty at the University of Geneva, in collaboration with IGB in Berlin, Swansea University and Potsdam University.
«Methane is a gas that is not very soluble in water. We know that it is present in very large quantities in anoxic sediments (depleted of oxygen), and that it exceeds the solubility capacity in water and forms small bubbles. Therefore, we hypothesised that the Chaoborus spp larvae absorb excess gas bubbles in order to inflate their vesicles, in spite of the water pressure, and are thus able to travel back to the surface,» explains Professor McGinnis.
The scientists did indeed find that methane, since it prefers air to water, slides naturally into the larva’s gas sacs, enabling it to re-inflate them and effortlessly reach the surface. Thanks to this ingenious inflatable «lift» system, Chaoborus spp saves up to 80% of the energy it would spend if it had to swim to the surface. Consequently, the larvae require less food and can expand their habitat.
Chaoborus spp larvae: exacerbating the greenhouse gas effect
The scientists subsequently wanted to know what larvae do with the methane they store. «First we put the larvae in an flask containing water that was rich in methane; then we moved them into methane-poor water,” continues McGinnis. “After taking measurements, we observed that the methane level increased in proportion to the amount of larvae present. In other words, the larvae releases this gas into the water once they reach the surface.»
Fresh water is responsible for 20% of natural methane emissions, and methane absorbs 28 times more heat than CO2; it has a significant impact, in short, on the greenhouse gas effect. Under normal conditions, methane is isolated and stored in lake sediments. However, the Chaoborus spp larvae let the gas out of this zone and increase its chances of reaching the atmosphere. They are, therefore, partly responsible for global warming.
What can be done about the situation? «The Chaoborus spp larvae, whose density ranges from 2,000 to 130,000 individuals per square metre, are only found when water is of poor quality, i.e. when it contains too many nutrients,” adds Professor McGinnis. “So this means improving water quality and the way we monitor agriculture and treat waste water. The larvae also allow some pollutants to reach the surface since they bring particles of sediment up with them.
Chaoborus spp: an obstacle in studying lake sediment
Paleolimnology is the study of water through the ages. The discipline is based on analysing the various layers of sediment found in bodies of water, with the striae enabling scientists to investigate the different states of water over the centuries. Yet, this is only possible if sediment has been allowed to settle and solidify in lakebeds without being disturbed. But, once again, the Chaoborus spp larvae disrupt these analyses since they stir up the layers of sediment when hiding away during the daytime. Consequently, scientists no longer have access to reliable striae for analysis. Professor McGinnis concludes, “In summary, although it is fascinating to study the insect, the presence of Chaoborus spp is always a bad sign for the health of an ecosystem. At the same time, it gives us one more reason to safeguard good water quality in our lakes”.
Link to the study:
http://www.nature.com/articles/srep44478
Daniel F. McGinnis, Sabine Flury, Kam W. Tang & Hans-Peter Grossart (2017): Porewater methane transport within the gas vesicles of diurnally migrating Chaoborus spp.: An energetic advantage. Scientific Reports 7:44478, DOI: 10.1038/srep44478.
Contacts:
Professor Daniel McGinnis
University of Geneva (UNIGE)
Daniel.Mcginnis@unige.ch
+41 22 379 0792
Professor Hans-Peter Grossart
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)
hgrossart@igb-berlin.de
+49 (0)33082 699 91
About IGB:
Work at IGB combines basic research with preventive research as a basis for the sustainable management of freshwaters. In the process, IGB explores the structure and function of aquatic ecosystems under near-natural conditions and under the effect of multiple stressors. Its key research activities include the long-term development of lakes, rivers and wetlands under rapidly changing global, regional and local environmental conditions, the development of coupled ecological and socio-economic models, the renaturation of ecosystems, and the biodiversity of aquatic habitats. Work is conducted in close cooperation with universities and research institutions from the Berlin/Brandenburg region as well as worldwide. IGB is a member of the Forschungsverbund Berlin e.V, an association of eight research institutes of natural sciences, life sciences and environmental sciences in Berlin. The institutes are members of the Leibniz Association.
Media Contact
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
A new puzzle piece for string theory research
Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations….
Climate change can cause stress in herring larvae
The occurrence of multiple stressors undermines the acclimatisation strategies of juvenile herring: If larvae are exposed to several stress factors at the same time, their ability to respond to these…
Making high-yielding rice affordable and sustainable
Plant biologists show how two genes work together to trigger embryo formation in rice. Rice is a staple food crop for more than half the world’s population, but most farmers…