How experience may lead to misperception

When judging distances, short distances seem longer than they really are. To explain this estimation bias, Munich neuroscientists have developed a new theoretical model. Copyright: Mareike Kardinal / Bernstein Coordination Site, 2015

How long is the way from the city hall to the train station? When we estimate distances, something curious happens: short distances seem longer, and long distances shorter than they really are. Similar biases occur during judgments of volume, brightness or time.

Psychologists call this phenomenon Vierordt’s law. Its independence of the involved sensory systems suggests that our brain possesses universal principles for the assessment of physical quantities. However, where do the characteristic estimation biases stem from? In collaboration with colleagues from Zurich, neuroscientists at the Bernstein Center Munich and the LMU Munich provide a new explanatory model, in which previous experience holds an important role.

“Our approach is based on probability theory and allows to reinterpret and combine two seemingly contradictory classic theories,” explains Stefan Glasauer, one of the authors of the study. The first theory of magnitude estimation is the Weber-Fechner law proposed in 1860. Some 100 years later, Stanley Smith Stevens introduced a power law and asserted that it was incompatible with the Weber-Fechner law.

This opinion is now disproved: “Using Bayes’ theorem from classical probability theory, both theories can be integrated into a new model,” Glasauer says.

In contrast to the previous approaches, the new model of the brain researchers also takes into account how prior knowledge affects the judgment of physical quantities. “We automatically gain experience with each magnitude estimation. This knowledge certainly affects subsequent estimates and is one of the causes leading to systematic estimation biases,” Glasauer explains.

In the process, learning occurs unconsciously and requires no feedback on the success of the assessment. “We hope that our approach will serve to better understand the neurobiological mechanisms of magnitude judgments,” Glasauer concludes.

The Bernstein Center Munich is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 180 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
Prof. Dr. Stefan Glasauer
LMU Munich
Department of Neurology and Center for Sensorimotor Research
Feodor-Lynen-Str. 19
81377 Munich (Germany)
Tel: +49 (0)89 4400-74839
Email: sglasauer@lmu.de

Original publication:
F. H. Petzschner, S. Glasauer & K. E. Stephan (2015): A Bayesian perspective on magnitude information. Trends in Cognitive Sciences, 19(5), 285-293.
doi: 10.1016/j.tics.2015.03.002

http://www.bccn-munich.de/people/scientists-2/stefan-glasauer Stefan Glasauer
http://www.bccn-munich.de Bernstein Center München
http://www.uni-muenchen.de LMU Munich
http://www.nncn.de National Bernstein Network Computational Neuroscience

Media Contact

Mareike Kardinal Nationales Bernstein Netzwerk Computational Neuroscience

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…