How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan. The components are sequentially put in place by humans or machines. Life, however, is based on a different principle. It starts bottom-up with molecular self-assembly.
The crystallization of sugar or salt are simple examples of self-assembly processes, where almost perfect crystals form from molecules that randomly move in a solution.
To better understand the growth of macroscopic structures from molecules, a research team of physicists and chemists of Kiel University has mimicked such processes with custom-made molecules.
As recently reported in the journal Angewandte Chemie they fabricated a variety of patterns over a wide range of sizes including the largest structures reported so far.
The researchers deposited triangular molecules (methyltrioxatriangulenium) on gold and silver surfaces and observed their self-assembly into honeycomb superstructures using a scanning tunneling microscope. The structures are comprised of periodic patterns with controllable sizes.
“Our largest fabricated patterns contain subunits of 3.000 molecules each, which is approximately 10 times more than previously reported”, says Dr. Manuel Gruber, a physicist from Kiel University.
The team also developed a model of the intermolecular forces that drive the self-assembly. “The unique feature of our results is that we can explain, predict and even control their size”, Gruber continues.
The detailed understanding of the driving forces controlling the size of the patterns holds promises for nanotechnology applications, and in particular for functionalization of surfaces. It may be envisioned to tune various physical properties like electronic, optical or reactivity to gases of a material by controlling the size of the superstructures on its surface.
The work was supported by the German Research Foundation within the Collaborative Research Centre 677 “Function by Switching” and the Priority Program 1928 “Coordination Networks: Building Blocks for Functional Systems”.
Photos are available for download:
https://www.uni-kiel.de/de/pressemitteilungen/2020/075-superstructure-1.jpg
Caption: Scanning tunneling microscopy (STM) image of a self-assembly of triangular molecules on a silver surface. The repeated pattern (half of a pattern is indicated in yellow) has a size of 45 nanometers. Each dot corresponds to a molecule with a diameter of ~ 1nm.
Copyright: Manuel Gruber and Torben Jasper-Tönnies
More information:
Details, which are only a millionth of a millimetre in size: this is what the priority research area “Kiel Nano, Surface and Interface Science – KiNSIS” at Kiel University has been working on. In the nano-cosmos, different laws prevail than in the macroscopic world – those of quantum physics. Through intensive, interdisciplinary cooperation between physics, chemistry, engineering and life sciences, the priority research area aims to understand the systems in this dimension and to implement the findings in an application-oriented manner. Molecular machines, innovative sensors, bionic materials, quantum computers, advanced therapies and much more could be the result. More information at https://www.kinsis.uni-kiel.de/en
Contact:
Prof. Dr. Rainer Herges
Otto Diels Institute of Organic Chemistry
Phone: +49 (0)431 880 2440
Mail: rherges@oc.uni-kiel.de
Web: www.otto-diels-institut.de/en/otto-diels-institute-of-organic-chemistry
Dr. rer. nat. Manuel Gruber
Surface Physics
Phone: +49 (0)431 880 5091
Mail: gruber@physik.uni-kiel.de
Web: www.ieap.uni-kiel.de/surface
T. Jasper-Tönnies, M. Gruber, S. Ulrich, R. Herges and R. Berndt, Coverage‐Controlled Superstructures of C3 Symmetric Molecules: Honeycomb versus Hexagonal Tiling, Angew. Chem. Int. Ed. https://doi.org/10.1002/ange.202001383
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202001383
Media Contact
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…