Immunobiology: Computer analysis fills gaps in antibody blueprint

Structure of an Antibody © Fotolia/molekuul.be Quelle: https://www.helmholtz-muenchen.de/en/news/latest-news/press-information-news/article/43070/index.html

The authors specifically studied IgG antibodies.* These are the most common antibodies in blood and act especially against viruses and bacteria. “They have a characteristic Y shape and are composed mainly of protein”, explains Elisa Benedetti, PhD student at the Institute of Computational Biology (ICB) of the Helmholtz Zentrum München. “However, during their production, the cell attaches different sugars to these protein molecules, and how this happens was until now not well understood”, continues the first author of the study.

Understanding this process is of great interest to researchers, because the identity of the sugar that is attached (in a process called glycosylation) dramatically influences the function of the antibody. While one sugar molecule might promote inflammation upon contact with an antigen, another might suppress the immune response.

Using computers to solve a biochemical problem

“The difficulty in studying the glycosylation blueprint lies, among other things, in the complex regulation of how the corresponding enzymes work”, explains last author Dr. Jan Krumsiek, junior group leader at the ICB and Junior Fellow at the Technical University of Munich. The bioinformaticians’ strategy to solve this biochemically difficult problem was to tackle it in the digital realm.

To this end, the scientists analyzed data from the Croatian ‘10001 Dalmatians Biobank’. They first studied blood samples from almost 700 test subjects aged between 18 und 88 with respect to the sugars attached to their IgG antibodies. By investigating the correlation of the measured glycans to each other, authors found that they largely corresponded to previous known steps in the enzymatic process of IgG glycosylation. Indeed, on the basis of the data, the algorithm could reconstitute the already known blueprint – and develop it further.

“We could predict new steps of how the sugar residues must be attached to the antibodies”, explains Krumsiek. “Using three additional cohorts comprising over 2,500 samples, we were able to replicate the statistical data.” Subsequently, the researchers could substantiate the predicted steps using further methods: firstly, on the basis of a genome-wide association study with about 1,900 samples from the Augsburg-based KORA research platform**, and, additionally, in a series of three experiments in the laboratory.

“We could show in vitro that at least one of our predicted reactions is enzymatically feasible and we demonstrated in cell culture that particular enzymes that are predicted to work together in the model, do actually co-localize in the cell, that is, they are spatially very close to each other”, says Krumsiek. “Our study shows how information technology and classical bench chemistry can support and enhance each other.”

Further information

* IgG stands for immunoglobulin G. These antibodies are produced by so-called plasma cells after contact with a corresponding antigen. “If the process of antibody glycosylation is defective, then the consequences can be severe”, explains Benedetti. Several diseases, including diabetes, autoimmune diseases such as lupus and cancer have already been linked with incorrectly attached sugars.

** For almost 30 years, the Cooperative Health Research in the Region of Augsburg (KORA) has been examining the health of thousands of citizens in Augsburg and environs. The aim of the project is to increase understanding of the impact of environmental factors, behaviour and genes on human health. The KORA studies focus on matters relating to the development and progression of chronic diseases, in particular myocardial infarction and diabetes mellitus. To that end, research is conducted into risk factors arising from lifestyle factors (including smoking, diet and exercise), environmental factors (including air pollution and noise) and genetics. Questions relating to the use and cost of health services are examined from the point of view of health services research.

Background:
The doctoral students Elisa Benedetti and Annika Wahl are participants in the Helmholtz Graduate School for Environmental Health (HELENA). Dr. Jan Krumsiek is scientist in the German Center for Diabetes Research (DZD) and Junior Fellow at the Technical University of Munich (TUM).

Original Publication:
Benedetti, E. et al. (2017): Network inference from glycoproteomics data reveals new reactions in the IgG glycosylation pathway. Nature Communications, DOI: 10.1038/s41467-017-01525-0

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Institute of Computational Biology (ICB) develops and applies methods for the model-based description of biological systems, using a data-driven approach by integrating information on multiple scales ranging from single-cell time series to large-scale omics. Given the fast technological advances in molecular biology, the aim is to provide and collaboratively apply innovative tools with experimental groups in order to jointly advance the understanding and treatment of common human diseases. http://www.helmholtz-muenchen.de/icb

Contact for the media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg – Tel. +49 89 3187 2238 – E-mail: presse@helmholtz-muenchen.de

Scientific Contact:
Dr. Jan Krumsiek, Helmholtz Zentrum München – German Research Center for Environmental Health, Institute of Computational Biology, Ingolstädter Landstr. 1, 85764 Neuherberg – Tel. +49 89 3187 3641, E-mail: jan.krumsiek@helmholtz-muenchen.de

Media Contact

Sonja Opitz Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…