Mainz University employs 3-D projector to demonstrate latest methods of computer-aided drug design
Students of Pharmaceutical Sciences at Johannes Gutenberg University Mainz (JGU) can now opt for taking a more research-oriented approach to their subject by exploring the latest techniques to create new active drug substances.
In lectures and practical courses, they learn about a selection of computer-based methods that the pharmaceutical industry already routinely uses for computer-aided drug design. Computer-aided drug design (CADD) is one of the mainstays of modern drug development.
Therefore, JGU's Institute of Pharmaceutical Sciences and Biochemistry has recently acquired a 3-D projector that visually demonstrates to students how drugs interact with their target structures in the body, i.e., proteins.
“Our objective is to introduce all students of Pharmaceutical Sciences and Biomedical Chemistry to the basics of computer-aided drug design because this method is now in standard use in the pharmaceutical industry. It is also an integral part of our research here at the institute,” explained Junior Professor Ruth Brenk, who initiated the project.
The Gutenberg Teaching Council (GTC) of Mainz University has provided nearly EUR 60,000 to support this research-oriented teaching project. The fact that the students are queuing up to take part in the elective module on CADD demonstrates that this was a worthwhile investment in modern learning and teaching.
The new setup of 3-D projections is used in seminars and lectures and has been put together by the institute itself using a projector, software, and a graphics card. Equipped with 3-D glasses, students can follow on a special metalized silver screen how and where proteins, with their three-dimensional structure, provide an access point for drugs, and how protein and ligand interact.
“Through demonstrations and through practical exercises and, of course, with the relevant teaching support, students can be made sufficiently familiar with the new techniques in a relatively short period of time so that they can then apply these themselves to independently work on current research topics”, Brenk summarized the advantages. CAAD lectures and practical courses have since become standard parts of the course of study at the Institute of Pharmaceutical Sciences and Biochemistry at Mainz University.
Further information:
Junior Professor Dr. Ruth Brenk
Institute of Pharmaceutical Sciences and Biochemistry – Therapeutic Life Sciences
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-25726
fax +49 6131 39-25670
e-mail: brenk@uni-mainz.de
http://www.uni-mainz.de/presse/19406_ENG_HTML.php – press release ;
http://www.pharmazie.uni-mainz.de/index_eng.php – Institute of Pharmacy and Biochemistry – Therapeutical Life Sciences ;
http://www.pharmazie.uni-mainz.de/AK-Brenk/ – Brenk Group ;
http://www.glk.uni-mainz.de/index_ENG.php – Gutenberg Teaching Council (GTC)
Media Contact
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
New organoid with all key pancreas cells
Researchers from the Organoid group (previously Clevers group) at the Hubrecht Institute have developed a new organoid that mimics the human fetal pancreas, offering a clearer view of its early development….
Unlocking the potential of nickel
New study reveals how to use single atoms to turn CO2 into valuable chemical resources. Nickel and nitrogen co-doped carbon (Ni-N-C) catalysts have shown exceptional performance in converting CO2 into…
‘Spooky action’ at a very short distance
Scientists map out quantum entanglement in protons. Particles streaming from collisions offer insight into dynamic interactions and collective behavior of quarks and gluons. Scientists at the U.S. Department of Energy’s…