New Method Speeds Up Development of Medication

In the laboratory of Bernhard Spingler (r.), trainee Philipp Nievergelt (l.) made an important contribution to determine the crystal structures of organic salts faster and easier. UZH

One of the key steps in developing new drugs is determining the atomic structure of its biologically active substances. This generally involves performing X-ray analyses of single crystal structures to determine the ingredient’s detailed three-dimensional set-up. However, growing suitable single crystals is often a complex and time-consuming process.

Determining crystal structures more quickly and efficiently

A research group headed up by Bernhard Spingler, professor at the Department of Chemistry of the University of Zurich, has now modified a method that had previously been used exclusively for the crystallization of proteins, and successfully applied it to organic salts. The team was able to determine the crystal structures of several organic salts with significantly less time and effort. “As organic salts make up about 40 percent of all active pharmaceutical ingredients, this new method can greatly speed up the development of drugs,” says Spingler.

Simplified screening of organic salts

The generation of solid salts of organic molecules is a key step in developing certain pharmaceutical ingredients. The positively and negatively charged particles that make up organic salts determine their properties, such as their solubility, crystal shape, ability to absorb water, melting point, and stability. The search for the ideal negatively charged anion to match the salt’s positively charged cation has until now been a very resource-intensive process.

Thanks to the semi-automatic combination of ion exchange screening and vapor diffusion for crystallization, this is not only done quicker and at lower costs. “We can now also determine the structures of the salt combinations directly after screening, since doing so only requires only very small amounts,” adds crystallography expert Spingler.

Trainee achieves breakthrough

The breakthrough in developing the novel method was achieved by Philipp Nievergelt, a trainee who had spent 10 months in Bernhard Spingler’s lab after graduating from Gymnasium. The successful junior researcher is listed as first author of the study and is now four semesters into his business chemistry studies at UZH. “The traineeship got me excited about lab work and encouraged me to continue doing research,” explains Nievergelt.

Literature:
Philipp P. Nievergelt, Martin Babor, Jan Čejka, Bernhard Spingler. A high throughput screening method for the nano-crystallization of salts of organic cations. Chemical Science. March 12, 2018. DOI: 10.1039/C8SC00783G

Contact:
Prof. Bernhard Spingler, PhD
Department of Chemistry
University of Zurich
Phone +41 44 635 46 56
E-mail: spingler@chem.uzh.ch

http://www.media.uzh.ch/en/Press-Releases/2018/crystal-structures-organic-salts….

Media Contact

Kurt Bodenmüller Universität Zürich

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A new puzzle piece for string theory research

Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations….

Climate change can cause stress in herring larvae

The occurrence of multiple stressors undermines the acclimatisation strategies of juvenile herring: If larvae are exposed to several stress factors at the same time, their ability to respond to these…

Making high-yielding rice affordable and sustainable

Plant biologists show how two genes work together to trigger embryo formation in rice. Rice is a staple food crop for more than half the world’s population, but most farmers…