New Transport Mechanisms Gain Access To Brain
Researchers at the Institute of Pharmacy and Molecular Biotechnology of Heidelberg University are exploring new approaches to the treatment of diseases of the central nervous system such as Alzheimer's and brain tumours. In collaboration with a research team from the USA, Prof. Dr. Gert Fricker in the field of pharmaceutical technology and neurobiologist Prof. Dr. Ulrike Müller are developing transport systems that can penetrate the blood-brain barrier to “ferry” certain agents into the brain. The Else Kröner-Fresenius Foundation is funding the three-year key project with approximately 560,000 euros. Research work is scheduled to begin in April 2016.
The blood-brain barrier, which separates the central nervous system from circulating blood, is formed by the vascular walls of the cerebral capillaries and allows the free passage of only a few nutrients. The barrier is virtually impermeable especially to macromolecules like proteins, DNA and RNA. Yet it is precisely these molecules, known as biologicals, that Prof. Fricker indicates are highly interesting for treating Alzheimer's and aggressive brain tumours, the glioblastomas.
His working group has now developed special polymer nanoparticles with a modified surface that enables them to specifically dock onto and permeate the blood-brain barrier, after which they dissolve in the brain. Prof. Fricker explains that these particles can be loaded with low molecular agents, i.e., substances of low molecular weight. The particles then transport the otherwise disallowed substances into the central nervous system, where they reach the therapeutically necessary concentrations.
The underlying concept is now being applied to biologicals provided by Prof. Müller and her colleague Prof. Dr. Olivia Merkel of Wayne State University Detroit (USA). Ulrike Müller specialises in Alzheimer’s research. The Heidelberg neurobiologists and her working group supply the peptide APPsα, which protects the nerve cells and acts as an antagonist to the toxic ß amyloid. The ß amyloid deposits are thought to be one of the main causes of Alzheimer’s disease. Olivia Merkel and her research team are supplying the so-called small interfering RNA molecules. These short molecules of ribonucleic acid help turn off the expression of certain genes in brain tumours.
The charitable Else Kröner-Fresenius Foundation promotes the advancement of medical research. The foundation supports key projects with the potential to make fundamental and groundbreaking discoveries that could impact an entire field of research.
Contact:
Prof. Dr. Gert Fricker and Prof. Dr. Ulrike Müller
Institute of Pharmacy and Molecular Biotechnology
Phone: +49 6221 54-8336 (Fricker) and -6717 (Müller)
gert.fricker@uni-hd.de, u.mueller@urz.uni-hd.de
Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de
http://www.ipmb.uni-heidelberg.de/phazt/abteilung
http://www.ipmb.uni-heidelberg.de/bioinfo-fkt_gen/mueller
Media Contact
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…