Quick and easy: new ELISA for plant virus detection yields results after two hours
The plant virologists Dr. Wulf Menzel and Dr. Stephan Winter from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures have developed a simplified, much faster variant of the enzyme-linked immunosorbent assay (ELISA) for the detection of plant viruses, thereby cooperating with the Australian biotechnology company TGR BioSciences.
Using the classic ELISA, results are obtained only after up to two days. However, the new ‘B-Fast ELISA’ yields reliable results already after about two hours.
“Our rapid test comprises much fewer steps and much shorter incubation times than the classic ELISA variants used up to now, so that the amount of work is considerably reduced,” Wulf Menzel explains. “Nevertheless, the B-Fast ELISA equals the classic methods with regard to sensitivity, specificity and the possibility of semi-quantitative analysis”.
The available kit contains 12 separate 8-well strips, so that low sample numbers can be tested without having to use an entire plate. “Thus, this ‘Friday afternoon ELISA’ is very convenient if the results are needed within a short time or if low sample numbers have to be tested frequently,” Wulf Menzel says.
The ELISA is the commonly used method for the routine detection of plant viruses. The new B-Fast ELISA variant, which is now available in plant pathogen diagnostics for the first time, is based on a technology developed by TGR BioSciences (CaptSure™ technology).
Its special feature is the coupling of the primary antibody with a peptide which can bind to another antibody immobilized on the ELISA plate. Thus, the incubation of primary and secondary antibody together with the sample can occur at the same time on the plate, and the entire complex is immobilized. After a washing step, detection by an enzymatic color reaction takes place.
At the moment, the DSMZ offers the B-Fast ELISA for the detection of ten different plant viruses, for example the Tomato spotted wilt virus or the Maize chlorotic mottle virus, which belong to the economically most important viruses worldwide. Moreover, the scientists are working on the expansion of the method in cooperation with TGR BioSciences, so that more viruses can be detected in the future.
Scientific contact
Dr. Wulf Menzel
Department plant viruses
Phone: 0531 2616-402
E-Mail: plantvirus@dsmz.de
About Leibniz Institute DSMZ
The Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures GmbH is a Leibniz Association institution. Offering comprehensive scientific services and a wide range of biological materials it has been a partner for research and industry organizations worldwide for decades. DSMZ is one of the largest biological resource centers of its kind to be compliant with the internationally recognized quality norm ISO 9001:2008. As a patent depository, DSMZ currently offers the only option in Germany of accepting biological materials according to the requirements of the Budapest Treaty. The second major function of DSMZ, in addition to its scientific services, is its collection-related research. The Brunswick (Braunschweig), Germany, based collection has existed for 42 years and holds more than 52,000 cultures and biomaterials. DSMZ is the most diverse collection worldwide: In addition to fungi, yeasts, bacteria, and archea, it is home to human and animal cell cultures, plant viruses, and plan cell cultures that are archived and studied there. http://www.dsmz.de
Media Contact
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…