Circuit points to future of nanoscale electronics

Using clusters of gold atoms and a microscopic lever, University of Toronto chemists have created a tiny circuit critical to the future of electronic engineering.

“When things are this small, they are fantastically sensitive,” says Professor Al-Amin Dhirani. “Such a circuit could make possible a bio-sensor that is activated by the reaction of just one molecule.” This has the potential for detecting important biological molecules including DNA, he notes.

Dhirani found that when the metal tip of an electrical source is placed near a lever coated in gold nanoparticles, electrons jump from the tip to the nanoparticles. This pulls the lever toward the tip. His finding allows researchers to detect the presence of a single electron in a circuit. Up until now, researchers could show only the overall electron flow in nanoparticles.

He adds that different nanoparticles could be combined to create custom-designed electronic materials with specific electronic properties. The study, which appears in the Dec. 15 issue of Physical Review B, was funded by the Canadian Foundation for Innovation, the Connaught Fund, the Natural Science and Engineering Research Council for Canada, the Ontario Innovation Trust and the Nortel Institute.

CONTACT: Professor Al-Amin Dhirani, Department of Chemistry, 416-946-5789, adhirani@chem.utoronto.ca or Nicolle Wahl, U of T public affairs, 416-978-6974, nicolle.wahl@utoronto.ca

Media Contact

Nicolle Wahl EurekAlert!

More Information:

http://www.utoronto.ca/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors