Research on TGN1412 – Fc:Fcγ receptor interaction: Strong binding does not mean strong effect
An ever increasing number of different monoclonal antibodies (mAb) are used to influence the immune system and to treat diseases, which are also constantly on the increase. Antibodies, also called immunoglobulins (Ig), are Y-shaped.
The short upper arms are equipped with binding sites, which bind to specific target structures, so-called antigens. This portion is very variable, since the antibodies are specific to various antigens. The “foot” of the Y is the Fc part which is less variable, and which determines the Ig subclass of an antibody.
The Fc portion mediates the effector function of an antibody such as complement activation or binding to Fc receptors (FcRs). The different Fc portions of the various Ig subclasses differ in their amino acid sequence and thus also in their binding properties regarding FcR.
Up to now, it has generally been assumed that a strong Fc:FcγR interaction also conveys a strong effector function, and that, on the other hand, a less pronounced Fc:FcγR interaction conveys no effector function, or at least, to an only negligible extent. Corresponding to the affinities of the FcγR for certain IgG subclasses and the effects relating to them, the appropriate mAb of different IgG subclasses are used for different indications.
In cancer therapy with antibodies, Fc:FcγR mediated cell toxicity is desired to combat cancer cells, and thus, the subclass IgG1 is used most frequently for such therapies. On the other hand, IgG2 or IgG4 are used if an Fc:FcγR interaction is undesired. This is frequently the case, for instance, if the aim is neutralisation of a target structure.
TGN1412 is a mAb which became well-known under dramatic circumstances: TGN1412 was developed for the treatment of rheumatoid arthritis and a particular form of leukemia. In 2006, the antibody was administered to six healthy individuals in the United Kingdom in a so-called “first-in-man” study.
All volunteers experienced a massive release of immunological messenger substances (known as cytokine storm) with life-threatening symptoms. Such signs of a risk were not detected in the preceding animal studies – which form an important part of the tests required before the first use in humans. The severe immunological reactions were an absolute surprise.
Since then, the mechanisms which caused this unexpected reaction have been studied extensively. TGN1412 was developed as an IgG4 mAb, since, in its working mechanism, only binding to the target structure (CD28 on T cells) was desired, however, not the interaction with FcγR. In follow-up tests after the disastrous first-in-man study with TGN1412, however, it could be shown that at least in vitro, exactly such Fc:FcγR interactions contribute to the induction of a cytokine storm.
Professor Zoe Waibler, head of Section “Product Testing of Immunological Biomedicines” of Division Immunology at the Paul-Ehrlich-Institut (PEI) and her research team have now obtained unexpected research results. At first, they were able to provide evidence that the previously known patterns of Fc:FcγR interactions also apply to TGN1412. TGN1412 as a member of IgG subclass 4 hardly interacts with the low-affinity FcγRII, but is bound by the high-affinity FcγRI.
Interestingly, the barely detectable interaction of TGN1412 with the low-affinity FcγRII mediates a strong effector function, i.e. the proliferation of T cells. Inversely, the comparatively strong interaction between TGN1412 and the high-affinity FcγRI only causes a very low T cell proliferation. The researchers observed this effect both with transgenic cell lines and with primarily human blood cells.
Professor Waibler commented the unexpected findings by stating that “These results will contribute to an even better understanding of immunological processes and, in addition to regulatory measures, shall serve to contribute to preventing such disasters in future.”
The Paul-Ehrlich-Institut, the Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and immunological veterinary medicinal products. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects. Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the manifold tasks performed at the institute. The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).
Dudek S, Weißmüller S, Anzaghe M, Miller L, Sterr S, Hoffmann K, Hengel H, Waibler Z (2019): Human Fcγ receptors compete for anti-CD28 monoclonal antibody TGN1412 binding which determines the antibody’s effector function. Eur J Immunol. 2019 Apr 19.
DOI: 10.1002/eji.201847924
https://onlinelibrary.wiley.com/doi/abs/10.1002/eji.201847924 : Abstract of the publication
https://bit.ly/2UObFr0 : This press release on the PEI-Website
Media Contact
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…