Researchers Learn to Measure the Aging Process in Young Adults

Measuring the aging process in young adults: Dr. Salomon Israel at the Hebrew University of Jerusalem’s Department of Psychology. (Photo: Hebrew University)

An international research team from the US, UK, Israel and New Zealand has found a way to measure the aging process in young adults  a much younger population than is usually tested in aging studies. Working with study participants age 26 to 38, the scientists identified factors that can determine whether people are aging faster or slower than their peers, and to quantify both their biological age and how quickly they are aging.

In a paper appearing today in the Proceedings of the National Academy of Sciences, the researchers showed that even among young adults, a person's biological age may differ by many years from their actual chronological age. For example, among 38-year-olds studied, the participants' biological age was found to range from under 30 years old, to nearly 60 years old. That means that some participants' biological age was more than 20 years older than their birth certificates indicated.

DOWNLOAD HI-RES PHOTO
Measuring the aging process in young adults: Dr. Salomon Israel at the Hebrew University of Jerusalem’s Department of Psychology. (Photo: Hebrew University)
“This research shows that age-related decline is already happening in young adults who are decades away from developing age-related diseases, and that we can measure it,” said Dr. Salomon Israel, a researcher and senior lecturer in the Hebrew University of Jerusalem's Department of Psychology, and a co-author of the study. Dr. Israel joined the Hebrew University's faculty in January 2015 after completing a postdoctoral fellowship in psychology of neuroscience at Duke University.

The data comes from the Dunedin Study, a long-term health study in New Zealand that seeks clues to the aging process. The study tracks over a thousand people born in 1972-73 from birth to the present, using health measures like blood pressure, liver function, and interviews.

As part of their regular reassessment of the study population in 2011, the team measured the functions of kidneys, liver, lungs, metabolic and immune systems. They also measured HDL cholesterol, cardiorespiratory fitness, lung function and the length of the telomeres — protective caps at the end of chromosomes that have been found to shorten with age. The study also measures dental health and the condition of the tiny blood vessels at the back of the eyes, a proxy for the brain’s blood vessels.

Based on a subset of these biomarkers, the research team determined a biological age for each participant. The researchers then looked at 18 biomarkers that were measured when the participants were age 26, and again when they were 32 and 38. From this, they drew a slope for each variable, and then the 18 slopes were added for each study subject to determine that individual’s pace of aging.

Most participants clustered around an aging rate of one year per year, but others were found to be aging as fast as three years per chronological year. Many were aging at zero years per year, in effect staying younger than their age.

As the team expected, those who were biologically older at age 38 also appeared to have been aging at a faster pace. A biological age of 40, for example, meant that person was aging at a rate of 1.2 years per year over the 12 years the study examined.

Study members who appeared to be more advanced in biological aging scored worse on tests typically given to people over 60, including tests of balance and coordination and solving unfamiliar problems. The biologically older individuals also reported having more difficulties with physical functioning than their peers, such as walking up stairs.

As an added measure, the researchers asked Duke University undergraduate students to assess facial photos of the study participants taken at age 38 and rate how young or old they appeared. Again, the participants who were biologically older on the inside also appeared older to the college students.

“We set out to measure aging in these relatively young people,” said Dan Belsky, an assistant professor of geriatrics in Duke University’s Center for Aging and the study's first author. “Most studies of aging look at seniors, but if we want to be able to prevent age-related disease, we’re going to have to start studying aging in young people.”

“That gives us some hope that medicine might be able to slow aging and give people more healthy active years,” said Terrie Moffitt, the Nannerl O. Keohane professor of psychology and neuroscience at Duke and the study's senior author.

The ultimate goal is to be able to intervene in the aging process itself, rather than addressing killers like heart disease or cancer in isolation.

“Accelerated aging in young adults predicts the symptoms of advanced aging that we see in older adults: deficits in cognitive and physical functioning, feelings of ill-health, and even an older appearance. The ability to measure how quickly a young person is aging may in the future enable us to engage in interventions that slow aging or target specific diseases,” the Hebrew University’s Dr. Israel said.

The research was funded by the New Zealand Health Research Council, U.S. National Institute on Aging, UK Medical Research Council, Jacobs Foundation and the Yad Hanadiv Rothschild Foundation.

CITATION: “Quantification of biological aging in young adults,” Daniel Belsky, Avshalom Caspi, et al. PNAS, July 7, 2015. DOI: 10.1073/pnas.1506264112 (link).

To contact Dr. Salomon Israel: salomon.israel@mail.huji.ac.il.

For more information:

Dov Smith
Hebrew University of Jerusalem
+972-2-5882844 / +972-54-8820860
dovs@savion.huji.ac.il

Media Contact

Dov Smith Hebrew University of Jerusalem

More Information:

http://www.huji.ac.il

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…