Scientists devise gentle technique to study heart tissue functioning

Observing heart cells. Credit: Daria Sokol/MIPT Press Office

The heart tissue is a special kind of muscle. When excitation waves propagate through it, this causes the constituent fibers to contract. The excitation waves coordinate the work of the heart compartments to ensure the organ functions correctly.

Many heart diseases, among them arrhythmias, are associated with disruptions in excitation wave conduction or with some peculiar propagation regimes taking over.

This is why fundamental research into the mechanisms of excitation wave propagation in the heart is important. Such studies provide insights into how the heart functions, how arrhythmias arise, and how various drugs and substances affect the processes in the cardiac tissue.

One of the staple methods for observing excitation waves is optical mapping. It involves the use of fluorescent dyes to visualize the propagation of excitations in the heart tissue. The process is monitored with sensitive video cameras, and the resulting data are then subjected to analysis.

Optical mapping has certain drawbacks. For one thing, the dyes and cameras suitable for the technique are fairly expensive. Another disadvantage is that the dye may interact with drugs and thus disturb the experiment. The dyes also affect the cells in the heart tissue sample, reducing their lifetimes.

“We found that if you grow the cardiac tissue culture on an elastic substrate made of polydimethylsiloxane, it is possible to observe wave propagation with a microscope, and no dyes are needed,” said Konstantin Guria, a senior researcher at the MIPT Laboratory of the Biophysics of Excitable Systems.

This idea laid the foundation for the new method. In it the heart tissue is cultivated on an elastic substrate. As a result, when an excitation wave propagates across the sample in the experiment, the substrate deforms.

This process can be optically registered via oblique illumination. The technique eases camera requirements, because even a GoPro provides sufficient quality.

“We have proposed a method that is simpler and cheaper than conventional mapping. That said, an even greater competitive advantage is being sure that the analyzed substance does not interact with a dye, since it becomes redundant for visualization,” commented Konstantin Agladze, who heads the Laboratory of the Biophysics of Excitable Systems at MIPT.

The new method can be used for affordable testing of various processes on tissue cultures grown from stem cells. The process lends itself to automation and is suitable for longer observations than those that rely on regular mapping.

In addition to MIPT staff, this study involved researchers from Vladimirsky Moscow Regional Research and Clinical Institute and the Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences.

The Laboratory of the Biophysics of Excitable Systems is part of the Phystech School of Biological and Medical Physics at MIPT. It uses human cardiac tissue models to conduct experimental research into the fundamental mechanisms behind heart arrhythmias. The head of the laboratory is Konstantin Agladze. You can reach the lab by contacting the secretary, Irina Egorova, at egorova.ia@mipt.ru or by dialing +7 (495) 408-46-45.

Media Contact

Varvara Bogomolova
bogomolova@phystech.edu
7-916-147-4496

 @phystech_en

https://mipt.ru/english/ 

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…