Scientists uncover vast numbers of DNA 'blind spots' that may hide cancer-causing mistakes

The researchers found hidden faults in areas that are tricky for gene-reading technology to decode. This technique, which unravels cancer's genetic blueprint, is an important part of the research that scientists carry out to understand more about cancer's biology.

By finding new ways to unlock these blind spots in the future, the researchers hope this will help us understand these mistakes and whether they lead to cancer. This could be a step towards developing tests to spot cancers earlier or provide new tactics for discovering future cancer treatments.

The team, from the Cancer Research UK Manchester Institute, compared two giant gene databases made from cancer cells grown in labs and cross-checked all the genes that are known – or are likely to be – involved in cancer to unearth the problem areas.

They found that the 400 blind spots in the genes were hidden in very repetitive DNA areas which cause the gene-reading technology to stutter. This problem reading the genes could conceal mistakes which might play a vital role in cancer.

Lead researcher Andrew Hudson, at the Cancer Research UK Manchester Institute at The University of Manchester, said: “The genes behind cancer are like a story. While we've been able to read most of the book using gene-reading technology, the limits of these tools mean some pages are missing.

“These pages could just be unimportant filler, but we wonder if they might hold important twists in the plot which could affect our understanding of cancer. The next step in our work will be to find a way to open up these areas to help piece together the full story.”

Nell Barrie, Cancer Research UK's senior science information manager, said: “We're at an unprecedented point in cancer research. As research accelerates we're revealing more and more about cancer's secrets and central to this is our better understanding of how genetic changes drive the disease.”

“By delving deeper into cancer's genetic origins we can spot the ways the disease is triggered and develops. This could help us to tackle it from the root, giving more cancer patients a chance at surviving the disease.”

The University of Manchester, including the Cancer Research UK Manchester Institute, joined forces with Cancer Research UK and The Christie NHS Foundation Trust to form the Manchester Cancer Research Centre, allowing doctors and scientists to work closely together to turn scientific advances into patient benefits sooner.

###

For media enquiries contact Emily Head in the Cancer Research UK press office on 020 3469 6189 or, out of hours, on 07050 264 059.

Notes to editors:

* Hudson et al. Discrepancies in Cancer Genomic Sequencing Highlight Opportunities for Driver Mutation Discovery. Cancer Research. DOI: 10.1158/0008-5472.CAN-14-1020

About Manchester Cancer Research Centre

The Manchester Cancer Research Centre (MCRC) is a partnership founded by The University of Manchester, including the CRUK Manchester Institute, The Christie NHS Foundation Trust and Cancer Research UK. The MCRC brings together the expertise, ambition and resources of its partner organisations in the fields of cancer treatment and clinical research and provides outstanding facilities where researchers and clinicians can work closely together. The aim of the MCRC is to improve understanding of how cancer develops, in order to translate basic and clinical research into new diagnostic tests and treatments that benefit cancer patients. http://www.mcrc.manchester.ac.uk

About Cancer Research UK

  • Cancer Research UK is the world's leading cancer charity dedicated to saving lives through research.
  • Cancer Research UK's pioneering work into the prevention, diagnosis and treatment of cancer has helped save millions of lives.
  • Cancer Research UK receives no government funding for its life-saving research. Every step it makes towards beating cancer relies on every pound donated.
  • Cancer Research UK has been at the heart of the progress that has already seen survival rates in the UK double in the last forty years.
  • Today, 2 in 4 people survive cancer for at least 10 years. Cancer Research UK's ambition is to accelerate progress so that 3 in 4 people will survive cancer within the next 20 years.
  • Cancer Research UK supports research into all aspects of cancer through the work of over 4,000 scientists, doctors and nurses.
  • Together with its partners and supporters, Cancer Research UK's vision is to bring forward the day when all cancers are cured. For further information about Cancer Research UK's work or to find out how to support the charity, please call 0300 123 1022 or visit http://www.cancerresearchuk.org . Follow us on Twitter and Facebook.

Media Contact

Emily Head EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…