Sleeping Beauty enables efficient gene transfer in haematopoietic stem cells of humans
In gene therapy of certain congenital disorders, the therapeutic gene is transferred into the target cells using particular transport vehicles, also known as vectors. Gene transfer into haematopoietic (blood forming) stem cells has been successfully tested in clinical trials for the treatment of various genetic disorders caused by a defect in one particular gene (monogenetic).
Examples include certain immune defects such as the group of Severe Combined Immune Deficiency disorders (SCID). In some studies, however, isolated cases of oncogenic mutations triggered by gene vector integration led to cancer (leukaemia) as an undesired side-effect of the therapy. Major efforts have ever since been undertaken to develop safer vector systems.
The research team of Dr Zoltán Ivics, head of Division Medical Biotechnology of the Paul-Ehrlich-Institut uses Sleeping Beauty for therapeutic gene transfer into human cells. The Sleeping Beauty (SB) transposon system is a non-viral vector, which is low-cost to manufacture, relatively simple to use. Up to now, its clinical use for hematopoietic stem cell therapy has been hampered by technical challenges.
In an international collaboration with other researchers from Germany, Spain and France, Ivics and his team have shown that gene constructs can be incorporated 20-times more efficiently into the genomes of hematopoietic stem cells if minicircle DNA is used to carry the SB transposon. Minicircle DNA is very small because sequences used for the manufacturing process of plasmids have been removed.
In addition, the efficacy and safety of the stable gene transfer ex vivo (outside the body) into the haematopoietic stem cells could be significantly increased by providing the transposase enzyme in the form of a synthetic messenger DNA (mRNA). This enzyme is required for the gene transfer.
“We have methodologically further developed the Sleeping Beauty transposon system in such a way that clinical use of this method is now possible,” said Dr Ivics, as he described the potential use of these research results.
Background: Transposon “Sleeping Beauty” and jumping genes
A transposon – jumping gene – is a section of DNA which can change its position in the genome (transposition). The ability to integrate itself into the genome can be used for the gene transfer. Sleeping Beauty is an artificial transposon derived from transposons occurring in fish as early as ten million years ago. The name was given to it based on Grimm's fairy tale “Sleeping Beauty”.
Original Publication
Holstein M, Mesa-Nuñez C, Miskey C, Almarza E, Poletti V, Schmeer M, Grueso E, Ordóñez Flores JC, Kobelt D, Walther W, Aneja MK, Geiger J, Bonig HB, Izsvák Z, Schleef M, Rudolph C, Mavilio F, Bueren JA, Guenechea G, Ivics Z (2018):
Efficient Non-viral Gene Delivery into Human Hematopoietic Stem Cells by Minicircle Sleeping Beauty Transposon Vectors.
Mol Ther Jan 17 [Epub ahead of print].
DOI: https://doi.org/10.1016/j.ymthe.2018.01.012
The Paul-Ehrlich-Institut, the Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and immunological veterinary medicinal products. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects.
Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the manifold tasks performed at the institute.
The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).
https://www.sciencedirect.com/science/article/pii/S1525001618300194?via%3Dihub – Open Access full text article
https://www.pei.de/EN/information/journalists-press/press-releases/2018/04-sleep… – Link to this press release on the Website of the Paul-Ehrlich-Institut
Media Contact
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…