Synthetic Lethality Offers a New Approach to Kill Tumor Cells, Explains Moffitt Cancer Center Researcher
A recent approach to treat cancer called synthetic lethality takes advantage of genetic alterations in cancer cells that make them more susceptible to certain drugs. Alan F. List, MD, president and CEO of Moffitt Cancer Center, co-authored an article on synthetic lethality featured in the October 30 issue of the New England Journal of Medicine.
“Genetic alterations in cancer in humans may involve gene inactivation, amplification or inactivation,” said List. These changes are not present in nonmalignant cells. Common chemotherapeutic agents aggressively kill tumor cells irrespective of genetic alterations. They also have a negative impact on normal cells and can cause significant side effects. Synthetic lethality harnesses the genetic differences between tumor cells and normal cells to minimize the effects on normal cells, and maximize a drug’s effects on cancer cells.
Synthetic lethality can target a variety of cellular defects, including alterations in DNA repair, cell-cycle control and metabolism. This approach can also be used to target interactions between tumor cells and surrounding normal cells that promote tumor survival and oncogenes that drive tumorigenesis that are difficult to target directly. Many of the synthetic lethal drugs and targets have been identified in large-scale drug screens of the entire human genome.
An example of synthetic lethality is the recent approach being investigated to treat breast cancer patients with BRCA1 and BRCA2 mutations. BRCA1 plays an important role is repairing damaged DNA. Women who have mutations in BRCA1 or BRCA2 have an increased risk of developing breast and ovarian cancer because their cells cannot properly repair DNA. This suggests that BRCA mutated breast cancer cells may be more susceptible to drugs that target DNA. Laboratory studies have confirmed this hypothesis by showing that agents that target another DNA repair protein called PARP significantly kill BRCA mutated cells. Several PARP inhibitors are now being investigated in clinical trials in breast cancer patients, and early results are promising.
“The goal of current anticancer approaches is to offer individualized and highly selective therapy. The treatment model for many anticancer approaches has been expanded, with movement away from dose-intensive, non-targeted cytotoxic agents to combination chemoimmunotherapy, new therapeutic combinations and targeted agents,” said List. Synthetic lethality approaches may provide an additional avenue for individualized patient treatment.
About Moffitt Cancer Center
Located in Tampa, Moffitt is one of only 41 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitt’s excellence in research, its contributions to clinical trials, prevention and cancer control. Moffitt is the top-ranked cancer hospital in the Southeast and has been listed in U.S. News & World Report’s “Best Hospitals” for cancer since 1999. With more than 4,500 employees, Moffitt has an economic impact on Florida of nearly $1.6 billion. For more information, visit MOFFITT.org, and follow the Moffitt momentum on Facebook, Twitter and YouTube.
Media Contact
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
A new puzzle piece for string theory research
Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations….
Climate change can cause stress in herring larvae
The occurrence of multiple stressors undermines the acclimatisation strategies of juvenile herring: If larvae are exposed to several stress factors at the same time, their ability to respond to these…
Soil ecosystem more resilient when land managed sustainably
Compared to intensive land use, sustainable land use allows better control of underground herbivores and soil microbes. As a result, the soil ecosystem is more resilient and better protected from…