The glue that keeps cells together
Controlled adhesion and division are crucial for our body's cells. This is the case, for instance, when the organs develop in an embryo or when broken skin is repaired during the healing process.
The importance of close cell-cell adhesion becomes evident especially when it is dysfunctional, for example when cells become loose in a tumour and break free. The tumour cell complex tends to dissolve in this case and create metastases.
Cadherins as key actors
The cadherin proteins assume a central role in the above mentioned examples. Located in the cell membranes, they are capable of creating strong bonds both among themselves and with the cadherins of other cells. A bond between two cadherin molecules of two cells triggers the formation of extensive contact zones.
The process of establishing and detaching contacts seems to be much more dependent on purely physical effects than thought previously. This is shown by computer simulations and experiments published in “Nature Physics” by Dr Susanne Fenz from the University of Würzburg's Biocentre with colleagues from Jülich, Stuttgart, Erlangen and Marseilles.
Connecting model membranes
The biophysicist brought together model membranes containing cadherin and then selectively changed different physical parameters that influence the membrane's fluctuation behaviour such as the concentration of sugar and salt.
“We observed that already very small changes had a huge impact on the formation and growth of cell-cell contacts,” says Dr Fenz, who leads a junior research group at the Department for Cell and Developmental Biology (Zoology I). “So it is possible to regulate a biological process by changing only physical parameters such as the temperature or local lipid composition of the membrane.”
But according to Fenz, it is still doubtful to what extent the results for the model membranes can be transferred to living systems. “We will have to confirm the relevance of our observations in living systems,” says Susanne Fenz.
Focus on pathogens that cause sleeping sickness
The Würzburg researcher has a general interest in the biophysics of membranes. For example, she also studies the pathogens that cause the sleeping sickness. The protozoa of the species Trypanosoma are one of Professor Markus Engstler's focal areas of research; he is the head of the Department for Zoology I at the Julius-Maximilians-Universität (JMU) in Würzburg, Germany.
What's special about the cell membrane of Trypanosoma is that it is densely populated with a protein shell that is varied continuously in a population. This high variability of the protein shell allows the pathogens to hide efficiently from the immune systems of animals and humans.
Membrane fluctuations mediate lateral interaction between cadherin bonds. Susanne F. Fenz, Timo Bihr, Daniel Schmidt, Rudolf Merkel, Udo Seifert, Kheya Sengupta & Ana-Sunčana Smith. Nature Physics, 12. June 2017, DOI: 10.1038/nphys4138
Contact
Dr Susanne Fenz, head of the junior research group “Physics of the Cell”, Biocentre of the University of Würzburg, JMU, T +49 931 31-89712, susanne.fenz@uni-wuerzburg.de
http://rdcu.be/tpWy The Nature Physics publication
http://www.zeb.biozentrum.uni-wuerzburg.de/people/staff_scientists/susanne_fenz/ Website of Dr Susanne Fenz
Media Contact
More Information:
http://www.uni-wuerzburg.deAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…