The mechanism of action of an antitumor drug used for the treatment of glioblastoma
Published in the journal PNAS, the study paves the way for new treatments for cancer. The results of the work indicate that, in contrast to what was previously believed, mAb806 could be used to treat many tumours that carry EGFR mutations and not only for a specific mutation.
Furthermore, the scientists have demonstrated that even when EGFR is not mutated, it can be treated in order to make it susceptible to mAb806 therapy.
“This finding lays the rational basis for anti-EGFR combination treatments with antibodies and kinase inhibitors, instead of “blind testing” them, as has been done until now,” says Modesto Orozco, head of the Molecular Modelling and Bioinformatics Lab at IRB Barcelona and senior professor of the Faculty of Chemistry at the University of Barcelona.
More than 100 mutations in EGFR have been described to give rise to glioblastoma. By means of computational simulation, Laura Orellana, first author of the study who began this project during her PhD at IRB Barcelona and is now a researcher at Stockholm University, discovered that the mutations studied induced a similar change in the shape of the receptor.
“Surprisingly, this change in EGFR matches the shape recognised by mAb806, but this hadn't previously been observed experimentally,” she comments.
Previous studies had reported that mAb806 recognises a region of EGFR that is normally hidden. In certain tumours carrying EGFRvIII, half of the receptor has been removed, so that this region becomes accessible, thereby allowing the therapeutic use of the antibody.
The researchers have now demonstrated that many different mutations on EGFR change the shape of the receptor, allowing mAb806 to detect this “hidden” region.
These changes in the shape of EGFR affect its activation. While analysing computational simulations of EGFR, Orellana discovered that while a part of the receptor is “eliminated in EGFRvIII, in other mutants this same part is “displaced”, with the same objective of activating the receptor.
“This surprising finding provides a rational basis to explain why distinct mutations in glioblastoma respond to drugs in a similar manner,” explains Orellana. “Mutations that are seemingly different are in fact equivalent and have the same effect on the receptor, driving the formation of a tumour”.
In collaboration with the Ludwig Institute for Cancer Research and the University of California San Diego, the researchers validated this computational hypothesis using cell and animal models, which confirmed the therapeutic potential of mAb806a.
“Given the numerous clinical assays underway with mAb806 worldwide, the translation of these results into clinical practice will be much faster than normal, and treatment with this antibody is expected to be suitable for many types of tumour that carry similar mutations, such as tumours found in the colon, breast and skin,” says Orozco.
###
The study is a collaboration between IRB Barcelona, the Royal Institute of Technology (KTH) of Stockholm, the University of Stockholm, the Ludwig Institute for Cancer Research, the University of California San Diego, the Barcelona Supercomputing Center, the University of Lisbon and the Centre de Biochimie Structurale (CNRS).
The study was funded by the Ministry of Science, Innovation and Universities, ICREA, the Catalan Government, the European Research Council, Vetenskapsrådet and the Swedish e-Science Research Center (E.L.)
Reference article:
Laura Orellana, Amy H. Thorne, Rafael Lema, Johan Gustavsson, Alison D. Parisian, Adam Hospital, Tiago N. Cordeiro, Pau Bernadó, Andrew M. Scott, Isabelle Brun-Heath, Erik Lindahl, Webster K. Cavenee, Frank Furnari and Modesto Orozco.
Oncogenic mutations at the EGFR ectodomain structurally converge to remove a steric hindrance on a kinase-coupled cryptic epitope.
PNAS (2019) doi: 10.1073/pnas.1821442116.
Media Contact
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…