The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!

These crystals observed by electronic scanning microscopy (left) made it possible to elucidate the structure of the BinAB toxin (right). © Mari Gingery (left) / Jacques-Philippe Colletier (right).

Mosquitoes are vectors for numerous devastating diseases, including malaria that is spread by Anopheles mosquitoes, and filariasis transmitted by Culex mosquitoes. The BinAB toxin, produced in the form of nanocrystals by the bacterium Bacillus sphaericus, specifically targets the larvae of these two groups of mosquitoes.

A complex, five-step intoxication process (see insert, below) explains the environmental safety of BinAB, which is harmless to other insects, crustaceans and humans. BinAB is therefore used in many countries to regulate mosquito populations. 

Unfortunately, the strength of BinAB is also its weakness: the toxin is ineffective on the larvae of Aedes mosquitoes, which spread the viruses for Dengue, Zika and chikungunya. A remodeling of BinAB might allow a broadening of its spectrum, but to achieve this it is necessary to understand its structure.

X-ray crystallography is an excellent method to reveal the structure of a protein, but it is generally only applicable to large crystals measuring around a tenth of a millimeter. Yet, the nanocrystals of BinAB that develop in vivo only measure ten-thousandths of a millimeter, and once dissolved, the toxin does not recrystallize.

An international consortium of scientists led by Jacques-Philippe Colletier, CNRS scientist at the Institut de Biologie Structurale (CNRS/CEA/Université Grenoble Alpes), Brian Federici, Professor at the University of California, Riverside (UCR) and David Eisenberg, Professor at the University of California, Los Angeles (UCLA), has just published this structure, solved by working on natural nanocrystals.

Faced with the obstacle of the small size of these crystals, they employed a new type of X-ray source, a free-electron laser, delivering ultra-short but highly intense X-ray pulses. Because nothing was known of the structure of BinAB, a purely experimental approach for structure determination (de novo phasing) was required, which had previously only been applied to samples of known structures in order to demonstrate its feasibility.

Thus the structure of BinAB is not only the first to have been solved from such small crystals (~ 300 nm) but also the first unknown structure to have been revealed de novo using a free-electron laser. This raises hopes of solving structures from smaller and more complex natural assemblages, such as organelles, the constituents of cells.

More immediately, understanding the structure of BinAB opens the way towards broadening its spectrum of action, with the aim to develop a “three-in-one” toxin that can target the larvae of three types of mosquito: Aedes (in order notably to control the spread of Zika virus), Culex (the vector for filariasis) and Anopheles (the vector for malaria).

The functioning of BinAB for the regulation of mosquito populations

The BinAB toxin is produced in the form of nanocrystals by Bacillus sphaericus bacteria at sporulation, or in other words when its nutrient resources diminish. Possibly attracted by the crystal, the mosquito larva eats the spore. The crystal dissolves in the larval gut where the pH is very high, releasing the BinAB toxin in a soluble form. BinAB is a binary toxin comprising two proteins, one of which specifically targets a receptor on the surface of intestinal cells (BinB), while the other serves exclusively to kill the cells (BinA). After dissolution of the crystal, BinA remains associated with BinB and the two partners are activated by the (enzymatic) digestion of their extremities (propeptides). BinB then binds to its receptor and assists the internalization of BinA – an essential step so that it can trigger the formation of a pore and thus kill the cell from the inside. What is the trophy for the bacterium? A larder where it can reproduce and survive.

http://www.nature.com/nature/journal/vaop/ncurrent/full/nature19825.html

  • Full bibliographic informationDe novo phasing with X-ray laser reveals mosquito larvicide BinAB structure. Jacques-Philippe Colletier, Michael R. Sawaya, Mari Gingery, Jose A. Rodriguez, Duilio Cascio, Aaron S. Brewster, Tara Michels-Clark, Robert H. Hice, Nicolas Coquelle, Sébastien Boutet, Garth J. Williams, Marc Messerschmidt, Daniel P. DePonte, Raymond G. Sierra, Hartawan Laksmono, Jason E. Koglin, Mark S. Hunter, Hyun-Woo Park, Monarin Uervirojnangkoorn, Dennis K. Bideshi, Axel T. Brunger, Brian A. Federici, Nicholas K. Sauter, David S. Eisenberg. Nature, 28 septembre 2016. DOI: 10.1038/nature19825

Notes for editors

CNRS scientist l Jacques-Philippe Colletier l T +33 (0)4 57 42 85 15 l jacques-philippe.colletier@ibs.fr
CNRS press l Véronique Etienne l T +33 (0)1 44 96 51 51 l presse@cnrs.fr

Media Contact

Véronique Etienne AlphaGalileo

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

New organoid with all key pancreas cells

Researchers from the Organoid group (previously Clevers group) at the Hubrecht Institute have developed a new organoid that mimics the human fetal pancreas, offering a clearer view of its early development….

Unlocking the potential of nickel

New study reveals how to use single atoms to turn CO2 into valuable chemical resources. Nickel and nitrogen co-doped carbon (Ni-N-C) catalysts have shown exceptional performance in converting CO2 into…

‘Spooky action’ at a very short distance

Scientists map out quantum entanglement in protons. Particles streaming from collisions offer insight into dynamic interactions and collective behavior of quarks and gluons. Scientists at the U.S. Department of Energy’s…