As autumn approaches, this chickadee’s brain begins to expand
New nerve cells put fall foraging on fast track
The “senior moments” that herald old age, and the ability to forget where we put something we held in our hands just moments ago, give us humans much cause to envy a species like the black-capped chickadee.
Especially when fall is right around the corner.
Every autumn, the chickadee roams a territory covering tens of square miles, gathering seeds and storing them in hundreds of hiding places in trees and on the ground. Over the harsh winter that follows, the tireless songbird, which weighs about 12 grams and fits inside the typical human hand, faithfully re-visits its caches to feed.
The chickadees unerring spatial memory is remarkable enough, says Colin Saldanha, assistant professor of biological sciences at Lehigh University and an anatomist who has studied songbirds for six years.
But it is what happens inside the tiny songbirds brain that Saldanha finds amazing. In the fall, as the chickadee is gathering and storing seeds, Saldanha says, its hippocampus, the part of the brain responsible for spatial organization and memory in many vertebrates, expands in volume by approximately 30 percent by adding new nerve cells. In songbirds, the hippocampus is located on the dorsal surface of the forebrain right beneath the skull. In mammals, the hippocampus is located beneath the cortex.
In the spring, when its feats of memory are needed less, the chickadees hippocampus shrinks back to its normal size, Saldanha says.
“To see this happen under natural conditions,” says Saldanha, who began studying the black-capped chickadee in 2001, “is truly awe-inspiring.
“Our hypothesis is that this exaggerated growth occurs when the birds need it the most – and were interested in finding out what exactly triggers it.”
Songbirds are the first species of vertebrate in which brain growth during adulthood has been found to occur, Saldanha says. By studying neurogenesis in the black-capped chickadee, Saldanha hopes to learn how hormones help guide the brains development and reorganization. He is particularly interested in the role played by the hormone estrogen in the growth of the hippocampus. Songbirds (like most vertebrates) make estrogen in their ovaries; scientists have determined that their brains also express aromatase, the enzyme that makes estrogen. Perhaps not surprisingly, the area of the songbird brain with the highest estrogen-making capability is the hippocampus.
“We know hormones affect the reorganization of the brain in ovo, in utero and during the early physical development of most vertebrates,” Saldanha says. “We are trying to figure out whether the ability to make estrogen in the hippocampus is helping the dramatic reorganization of the [adult] brain.”
Saldanha uses transmission electron microscopy (TEM) to examine neurons (nerve cells) and synapses (connections between nerve cells, where scientists think learning occurs) from the brain of the black-capped chickadee. His goal is to determine whether estrogen is being made in the cellular body or in the synapse, and whether the location of this estrogen-making ability changes seasonally.
“Were looking at the ability of nerve cells and connections to make estrogen in the brain and asking if this ability is involved in brain reorganization,” he says.
“We are the first lab, I think, to look at estrogen-synthesizing neurons in the songbird hippocampus at the electron-microscope level. We may, in fact, be the only lab using this technology to investigate songbird spatial memory.”
Saldanha is licensed to catch and house birds by the U.S. Department of the Interior Bird Banding Laboratory and the Pennsylvania Game Commission. He has placed feeders in the woods around Lehighs Mountaintop Campus, and he keeps captive chickadees in an aviary outside his office in Iacocca Hall.
The behavior of the black-capped chickadee has been studied for a long time, he says, and much is known about its lifecycle and habits. Only recently have scientists begun to study its brain.
“Its nice to have an ecological umbrella under which to ask biological questions. Because we know the birds natural behavior, I feel I can be more confident in the validity of my studies. It can be difficult sometimes to extend findings from the Petri dish to the real world.”
Many neuro-degenerative diseases involve the hippocampus, Saldanha says. In humans, strokes can affect the hippocampus and cause a “profound deficit” in memory, especially in the ability to make new memories. In the brains of Alzheimers patients, the hippocampus shrinks.
But Saldanha stresses that his studies are new and that any applications lie far in the future.
“Maybe in the very long term, we can understand how to prevent and restore memory loss in patients with Alzheimers,” he says. “Often times, the best way to fix something thats broken is to figure how it works when its not broken.”
Media Contact
More Information:
http://www.lehigh.edu/All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes
Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…
Laser-based artificial neuron mimics nerve cell functions at lightning speed
With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…
Optimising the processing of plastic waste
Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…