Inner Structure of Cells Behaves Much as Molten Glass
Finding may impact understanding of mechanical facets of many diseases
An international team led by Jeffrey J. Fredberg, professor of bioengineering and physiology at the Harvard School of Public Health, has found that the cell modulates its mechanical properties in much the same way as a glassblower shapes fine glassware. This new view of cellular functions sheds light on mechanical facets of phenomena as diverse as asthma, cancer, inflammation, and vascular disease. These findings appear in advance online from the July, 2005 issue of Nature Materials.
To fashion a work of glass, a glassblower must heat the object, shape it, and then cool it down. Fredberg and his colleagues have shown that the cell modulates its mechanical properties and changes its malleability in much the same way. But instead of changing temperature, the cell changes a temperature-like property that has much the same effect.
Using an array of novel nanotechnologies developed by the researchers at HSPH, Fredberg et al. discovered the basic physical laws that describe cell mechanical behavior. Previously, the classical model of cell mechanical behavior had pictured the cell as a viscous fluid core contained by an elastic cortical membrane, but their findings did not at all conform to that picture. The teams experiments show that the cell is a strange intermediate form of matter that is neither solid nor fluid, but retains features of both. Moreover, as the cell goes about its routine business of stretching, spreading, and contracting, it can vary that temperature-like property and control where it sits along the spectrum between solid-like and fluid-like states.
“These findings have important lessons for understanding the dynamics of structural proteins at a scale that is intermediate between the single molecule and integrative cellular function. This is a collective phenomenon of many molecules interacting in concert, and would disappear altogether in the study of one molecule interacting with another in isolation,” said Fredberg. He continued, “The laws governing cell behavior bring together into one physical picture cell elasticity, viscosity, and remodeling, and give us a different way to think about the molecular basis of airway narrowing in asthma, vessel narrowing in vascular disease, wound repair, embryonic development, and cell invasion in cancer, all of which have important mechanical components. Perhaps most surprising of all, in addition to offering a different way to think about mechanisms of disease, these findings shed light upon the behavior of familiar inert condensed substances that remain poorly understood, including pastes, foams, emulsions, and granular materials.”
The research was supported by grants from the National Institutes of Health.
Contact:
Christina Roache
(617) 432-6052
677 Huntington Avenue
Boston, MA 02115
Media Contact
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Magnetic tornado is stirring up the haze at Jupiter’s poles
Unusual magnetically driven vortices may be generating Earth-size concentrations of hydrocarbon haze. While Jupiter’s Great Red Spot has been a constant feature of the planet for centuries, University of California,…
Cause of common cancer immunotherapy side effect s
New insights into how checkpoint inhibitors affect the immune system could improve cancer treatment. A multinational collaboration co-led by the Garvan Institute of Medical Research has uncovered a potential explanation…
New tool makes quick health, environmental monitoring possible
University of Wisconsin–Madison biochemists have developed a new, efficient method that may give first responders, environmental monitoring groups, or even you, the ability to quickly detect harmful and health-relevant substances…