Novel material may demonstrate long-sought ’liquid’ magnetic state

A crystal diagram shows the triangle-shaped atomic structure of nickel gallium sulfide, which may have an unusual "liquid" magnetic state at low temperatures. Red spheres represent nickel, green spheres are gallium, and yellow are sulfur. Image credit: S. Nakatsuji et al., Science, 9/9/2005

A novel material that may demonstrate a highly unusual “liquid” magnetic state at extremely low temperatures has been discovered by a team of Japanese and U.S. researchers, according to tomorrow’s issue of Science.*


The material, nickel gallium sulfide (NiGa2S4), was synthesized by scientists at Kyoto University. Its properties were studied by both the Japanese team and by researchers from The Johns Hopkins University (JHU) and the University of Maryland (UM) at the Commerce Department’s National Institute of Standards and Technology (NIST).

The scientists studied the polycrystalline sample using both X-rays and neutrons as probes to understand its structure and properties. The neutron experiments were conducted at the NIST Center for Neutron Research.

The team found that the triangular arrangement of the material’s atoms appears to prevent alignment of magnetic “spins,” the characteristic of electrons that produces magnetism. A “liquid” magnetic state occurs when magnetic spins fluctuate in a disorderedly, fluid-like arrangement that does not produce an overall magnetic force. The state was first proposed as theoretically possible about 30 years ago. A liquid magnetic state may be related to the similarly fluid way that electrons flow without resistance in superconducting materials.

According to Collin Broholm, a professor in the Department of Physics and Astronomy at The Johns Hopkins University in Baltimore, “the current work shows that at an instant in time the material looks like a magnetic liquid, but whether there are fluctuations in time, as in a liquid, remains to be seen.”

Each electron can be thought of as a tiny bar magnet. The direction of its “north” pole is its spin. “An ordered pattern of spins generally uses less energy,” says Broholm, “but the triangular crystal structure prevents this from happening in this material.”

The team conducted their neutron experiments with an instrument called a “disk chopper spectrometer.” The only one of its kind in North America, the instrument sends bursts of neutrons of the same wavelength through a sample. Then, more than 900 detectors arranged in a large semicircle determine exactly where and when the neutrons emerge, providing information key to mapping electron spins.

“The energy range and resolution we can achieve with this instrument is ideal for studying magnetic systems,” adds Yiming Qiu, a NIST guest researcher from UM.

The wavelength of the slowed-down (cold) neutrons available at the NIST facility–less than 1 nanometer (billionth of meter)–also allows the researchers to study nanoscale magnetic properties too small to be measured with other methods.

* S. Nakatsuji, Y. Nambu, H. Tonomura, O. Sakai, S. Jonas, C. Broholm, H. Tsunetsugu, Y. Qiu, Y. Maeno. “Spin Disorder on a triangular lattice.” Science, Sept. 9, 2005.

Media Contact

Gail Porter EurekAlert!

More Information:

http://www.nist.gov

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…