Alzheimer's disease: Inflammation triggers fatal cycle

Alzheimer's disease is characterized by clumps of the protein Aß (amyloid beta), which form large plaques in the brain. Aß resembles molecules on the surface of some bacteria. Over many millions of years, organisms have therefore developed defense mechanisms against such structures.

These mechanisms are genetically determined and therefore belong to the so-called innate immune system. They usually result in certain scavenger cells absorbing and digesting the molecule.

In the brain, the microglia cells take over this role. In doing so, however, they trigger a devastating process that appears to be largely responsible for the development of dementia.

On contact with Aß, certain molecule complexes, the inflammasomes, become active in the microglia cells. They then resemble a wheel with enzymes on the outside.

These can activate immune messengers and thereby trigger an inflammation by directing additional immune cells to the site of action.

“Sometimes the microglia cells perish during this process,” explains Prof. Dr. Michael Heneka, head of a research group at the German Center for Neurodegenerative Diseases (DZNE) and director of the Department of Neurodegenerative Diseases and Gerontopsychiatry at the University Hospital Bonn. “Then they release activated inflammasomes into their environment, the ASC specks.”

Disastrous dual role

These released specks take on a calamitous dual role: On the one hand, they bind to the Aß proteins and make their degradation more difficult. On the other hand, they activate the inflammasomes in even more microglia cells, and much more than Aß alone would do.

During this process, more and more ASC specks are released. It thus adds fuel to the fire, as it were, and thereby permanently stokes up the inflammation. “As a result, a fundamentally useful immune mechanism becomes an essential factor in the development of Alzheimer's disease,” emphasizes Heneka.

It is actually desirable that ASC specks remain active after cell death: They can then be taken up and used by other immune cells. “These then do not have to produce their own inflammasomes, which means that they can react more quickly to a bacterial infection, for example,” says Heneka.

In the brain, however, this mechanism is of little benefit: Nerve cells constantly produce small amounts of Aß. It is possible that these deposits only become a serious threat to brain function in combination with the ASC specks.

The scientists hope that a better understanding of these processes might also lead to the development of new therapeutic approaches. This is because the accumulation of Aß probably begins decades before the first symptoms of disease appear. Early intervention may be able to slow down this fateful process.

“This might make it possible to treat Alzheimer's disease preventively in the future, so that there is no impairment of mental performance in the first place,” hopes Prof. Heneka.

Prof. Dr. Michael Heneka
Director of the Department of Neurodegenerative Diseases and Gerontopsychiatry at the University Hospital Bonn
German Center for Neurodegenerative Diseases (DZNE)
Tel. +49-(0)228-28713091
E-mail: michael.heneka@dzne.de

Lea L. Friker, Hannah Scheiblich, Inga V. Hochheiser, Rebecca Brinkschulte, Dietmar Riedel, Eicke Latz, Matthias Geyer and Michael T. Heneka: Amyloid Clustering around ASC Fibrils Boosts Its Toxicity in Microglia; Cell Reports; DOI: 10.1016/j.celrep.2020.02.025

Media Contact

Johannes Seiler idw - Informationsdienst Wissenschaft

More Information:

http://www.uni-bonn.de/

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…