Deconstructing mental illness through ultradian rhythms

This is Kai-Floriant Storch, Douglas Institute, Montreal. Credit: Douglas Institute

Our daily sleep-wake cycle is governed by an internal 24-hour timer, the circadian clock. However, there is evidence that daily activity is also influenced by rhythms much shorter than 24 hours, which are known as ultradian rhythms and follow a four-hour cycle. Most prominently observed in infants before they are able to sleep through the night, ultradian rhythms may explain why, on average, we eat three meals a day that are relatively evenly spaced across our daily wake period.

These four-hour ultradian rhythms are activated by dopamine, a key chemical substance in the brain. When dopamine levels are out of kilter – as is suggested to be the case with people suffering from bipolar disease and schizophrenia – the four-hour rhythms can stretch as long as 48 hours.

A novel hypothesis

With this study, conducted on genetically modified mice, Dr. Storch and his team demonstrate that sleep abnormalities, which in the past have been associated with circadian rhythm disruption, result instead from an imbalance of an ultradian rhythm generator (oscillator) that is based on dopamine. The team's findings also offer a very specific explanation for the two-day cycling between mania and depression observed in certain bipolar cases: it is a result of the dopamine oscillator running on a 48-hour cycle.

Groundbreaking

This work is groundbreaking not only because of its discovery of a novel dopamine-based rhythm generator, but also because of its links to psychopathology. This new data suggests that when the ultradian arousal oscillator goes awry, sleep becomes disturbed and mania will be induced in bipolar patients; oscillator imbalance may likely also be associated with schizophrenic episodes in schizophrenic subjects. The findings have potentially strong implications for the treatment of bipolar disease and other mental illnesses linked to dopamine dysregulation.

The work, entitled “A highly tunable dopaminergic oscillator generates ultradian rhythms of behavioral arousal,” has been funded by the Canadian Institutes of Health Research, the Natural Sciences Engineering and Research Council, and the Canadian Foundation for Innovation. To read the full paper: http://elifesciences.org/content/3/e05105

Contacts:

Anne Quirion
Media Relations
Communications and Public Affairs
Douglas Mental Health University Institute
Tel.: 514-761-6131, ext. 2717
anne-quirion@douglas.mcgill.ca

Cynthia Lee
Media Relations Office
McGill University
Tel.: 514-398-6754
cynthia.lee@mcgill.ca

About the Douglas Institute – http://www.douglas.qc.ca

The Douglas is a world-class institute affiliated with McGill University and the World Health Organization. It treats people suffering from mental illness and offers them both hope and healing. Its teams of specialists and researchers are constantly increasing scientific knowledge, integrating this knowledge into patient care, and sharing it with the community in order to educate the public and eliminate prejudices surrounding mental health.

Media Contact

Florence Meney EurekAlert!

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

New organoid with all key pancreas cells

Researchers from the Organoid group (previously Clevers group) at the Hubrecht Institute have developed a new organoid that mimics the human fetal pancreas, offering a clearer view of its early development….

Unlocking the potential of nickel

New study reveals how to use single atoms to turn CO2 into valuable chemical resources. Nickel and nitrogen co-doped carbon (Ni-N-C) catalysts have shown exceptional performance in converting CO2 into…

‘Spooky action’ at a very short distance

Scientists map out quantum entanglement in protons. Particles streaming from collisions offer insight into dynamic interactions and collective behavior of quarks and gluons. Scientists at the U.S. Department of Energy’s…