Traffic jams in the brain: Disrupted transport routes in nerve cells are a cause of Parkinson's

Nerve fibres give nerve cells their characteristic long shape. Measuring up to one metre in length, they form the contact points to other nerve cells. In order to carry out the important task of communicating with other nerve cells, the fine branches of these nerve fibres and their ends, called synapses, must be regularly supplied with energy from the cell body.

If this energy supply is interrupted, the synapses are destroyed. Connections between nerve cells are then disrupted, which can lead to the cells dying off. This process is typical for the development of brain disorders such as Parkinson’s disease.

It is unclear which mechanisms are responsible for the loss of nerve cells in Parkinson’s. Researchers at FAU led by Dr. Iryna Prots and Prof. Dr. Beate Winner from the Department of Stem Cell Biology in conjunction with researchers from the Department of Molecular Neurology (Janina Grosch, head: Prof. Dr. Jürgen Winkler) have now succeeded in demonstrating that a type of ‘traffic jam’ in the nerve cells could be the cause.

The researchers discovered that the traffic jam is triggered by a protein called alpha-synuclein, which is also found in healthy nerve cells. In abnormal nerve cells, the protein forms deposits, or even lumps, leading to a delay, disrupting the energy supply of the nerve fibres and, ultimately, damaging the synapses.

The researchers were also able to demonstrate this mechanism in cell cultures taken from patients with Parkinson’s. A small skin sample was taken from affected patients. These skin cells were then converted into stem cells, which can be developed into any type of cell, and in this case, into nerve cells.

In initial trials, the researchers succeeded in suppressing the formation of lumps of alpha-synuclein, thus improving the transportation of information in the nerve fibres. However, the substance they used has not yet passed clinical trials. Nevertheless, the lead author of the study, Dr. Iryna Prots, says ‘Our findings mean we can improve our understanding of the mechanisms that cause Parkinson’s and push forward new strategies for treatment during the progression of the disease.’

Dr. Iryna Prots
Phone +49 9131 8539303
Iryna.Prots@uk-erlangen.de

Prof. Dr. Beate Winner
Phone +49 9131 8539301
Beate.Winner@fau.de

2018 Prots, J. Grosch, R.-M. Brazdis, K. Simmnacher, V. Veber, S. Havlicek, C. Hannappel, F. Krach, M. Krumbiegel, O. Schütz, A. Reis, W. Wrasidlo, D.R. Galasko, T.W. Groemer, E. Masliah, U. Schlötzer-Schrehardt, W. Xiang, J. Winkler, and B. Winner. α-Synuclein oligomers induce early axonal dysfunction in human iPSC-based models of synucleinopathies. PNAS July 10, 2018. 201713129; published ahead of print July 10, 2018. doi: 10.1073/pnas.1713129115

Media Contact

Dr. Susanne Langer Friedrich-Alexander-Universität Erlangen-Nürnberg

More Information:

http://www.fau.de/

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…